

Photograph by Major Wheeler.
MAKALU

Photograph by Captain Penney.

RECORDS

or mux
 sURVEY OF INDIA

Volume XVIIII
(Supplementary to General Report 1921-22).

ANNUAL REPORTS OF

PARTIES AND OFFICES

1921-22.
prepared undeli thli dilection of
Colonel C. H. D. RYDER, C. B., C. I. E., D. S. O., R.E.
Surveyor General of India.

MAPS PUBLISHED BY THE SURVEY OF INDIA
are obtainable from the Map Record and Issue Offle, 13, Wood Street, Calcutta, on the Public Service-on Cash Payment or Book-Transfer, and, for private use- on Cash Payment or V.P. P.

Forest maps are obtainable only from the Offler in charge, Forest Map Office, Dehra Dun.

Geological maps are obtainable from the Director, Geological Survey of India, Calcutta.

The Survey of India publish maps for the greater part of SOUTFIERN ASIA between the meridians of 44° and 124° East of Greenwich and between parallels 4° and 40° north latitude.
2. Survers executed after 1905 are classed as "MODERN", those PRIOR to that date are classed as "OLD".
3. Maps are printed in two styles or editions viz., LAYERED and POLITICAL:-
(a) The LAYERED dition represents a map printed in colours with graduated layer tints of colour to show altitudes, and, shading to emphasize the hills. This edition gives prominence to the physical features.
(b) The POLITICAL edition represents a map printed in colours, but without graduated layer tints. Hills are represented by contours and shading. This edition gives prominence to the Civil Divisions of India which are shown by ribands of colour along boundaries of administrative partitions.
NOTE.-When maps are pribted in colours, from mixed or old survers, the colition is styled "PRELIMINARY"; and when published in black only or with bills in brown, the edition is styled "PROVISIONAL" issue.
4. The series of Modern maps are grouped under three Divisions:-
(I) GEOGRAPHICAL, embracing-
(a) SOUTHERN ASIA SERIES, scale $1: 9,000,000$ or nearly 1 inch $=32$ miles, in LAYERED and POLITICAL editions, size 36 inches $\times 24$ inches, price Rs. 3 per copy.
(b) INDIA AND ADJACENT COUNTRIES; scale 1:1,000,000 or nearly 1 inch $=16$ miles, in LAYERED and POLITICAL editions, or if from old surveys, as PRELIMINARY editions; size 24 inches $\times 10$ inches, price Re. 1-8 per copy. If printed on linen-backed paper Rs. 2-4.
(c) INTERNATIONAL MAP OF INDIA, scale 1: 1,000,000 or nearly 1 inch $=16$ miles, in LAYERED edition (without shading of hills), size 30 inches $\times 26$ inches, price Re. 1-0 per copy.
(1I) TOPOGRAPHICAL, comprising maps on:-
(a) Scale 1 incil $=1$ mile, in the POLITICAL edition, size 24×19 inches, price Re. 1-8 per copy.
(b) Scale 1 inch $=2$ miles, in the POLITICAL edition, size 24×19 inches, price Rs. 3-0 per copy.
(c) Scale linch $=4$ mies, in the LAYERED and POLITICAL editions, size 24×19 inches, price Re. $1-8$ per copy, and from old surveys as PROVISIONAL issues, price Re. 1 per copy.
NOTE.-Modern Topographical maps printed on linen-loncked paper aro As. 12 extra per copy. Index charts or Key maps to the Geographical and Topographical serios are obtainable gratia,
(III) GENERAL MAPS which include:-
(a) GENERAL MAPS OF INDIA, scale 1 inch $=32$ miles, in sets of 12 sheets, each sheet 25×32 inches, in LAYERED and POLITICAL editions, price Rs. 12 per set, and on scale 1 inch $=64$ miles, POLITICAL edition only, size about $3 \frac{1}{2}$ feet square, at Rs. 6 the copy. Also various maps of India on the same and smaller scales and miscellaneous special maps illustrating Railways, \&ce.
(b) PROVINCIAL MAPS, on scales 1 inch $=16$ miles and 1 inch $=32$ miles.
(c) DISTRICT MAPS, on scales 1 inch $=4$ miles and 1 inch $=8$ miles.
(d) CANTONMENT AND TOWN MAPS AND OTHER MISCELLANEOUS MAPS, of various scales and prices.
5. MAP CATALOGUES can be obtained at ONE RUPEE per copy.
6. Maps can be mounted on cloth and folded or mounted on rollers for hanging, \&c., at an extra charge.
7. For particular purposes, copies of any map can be supplied in black or black and brown on request and at special rates.
8. Auy map, chart or diagram can be reproduced if the applicant submits a suitable original drawing. Special rates exist for such work and estimates can be given on request.
9. The prices quoted for various maps are exclusive of postage and V.P.P. charges. Any further information may be obtained free of charge from the Otticer in charge, Map Record and Issue Office, 13, Wood Street, Calcutta.

CONTENTS.

PART I.

TOPOGRAPHICAL SURVEY.
Page.
NORTHERN CIRCLE. Summaiy 3
No. 1 Palty 3
No. 2 Paity 5
No. 3 Party 9
No. 4 Party 12
No. 20 Party (Cantonment) 14
No. 22 (Riverain) Party 14
No. 23 (Punjab Rectangulation) Party 17 17
The Bhofāl Traverse Detachment 19
SOUTHERN CIRCLE. Sumary 21
No. 5 Paluty 21
No. 6 Paity 22
No. 7 Party 23
No. 8 Pality 25
Thaning Section 26
EASTERN CIRCLE. Sumany 28
No. 9 Party 28
No. 10 Party 32
No. 11 Palty 33
No. 12 Party 35
No. 21 (Burma Forest) Party 37
Table I.-Out-turns of Plane-tabling 40
Table II.-Details of Triangulation and Traversing 4,
Table III.-Cost-rates of Survey 45
PART II.
GEODETIC AND SCIENTIFIC OPERATIONS.
Astronomical Latitudes. No. 13 Party 49
Pendulum Operations. No. 14 Pality 49
Tilingulation. No. la Palty 49
Tidal Operations. No. 16 Palty 49
Levelling. No. 17 Party 59
Magnetic Survey. No. 18 Panty 83
Base Line. No. 19 Party 49
The Computina Office. Isostasy 105
Computations 105
Adjustments 105
Miscellaneous 105
Triangulation Pamphlets 105
Levelling 106
Revision 106
Requisitions 106
Printing Section 106
Workshop 106
Observatories 107
List of Earthquakes 107
Solar Photography 107

SPECIAL REPORTS.

Page
Thayerse Survey of Allahabaj cety 109
Settlement of Bolndaity between Mysore and South Kanara 110
Notes on Revision Sirbiey iy the veighboumbod of Poona 110
Topographical results of Sil H.H. Hayden's Expedition to Tibet 113
APPENDIX.
List of Strvey of India Pubiications 117
ILLUSTRATIONS.
$\left.\begin{array}{l}\text { Makali } \\ \text { Mehgiel Ahchipelago }\end{array}\right\}$ FrontispieceTwo Panoramas of Tristia
facing page 49
Map ilidistrating Sir H. H. Hayden's Explomations 116
INDEX MAPS AND CHARTS.No.
ALL SCALES, Modern Survey
and Publication 1
ONE-INCH SERIES, Modern 2
HALF-INCH SERIES, Modern 3
QUARTER-INCH SERIES, Modern 4
$1: 1,000,000$. 'India and Adjacent Countries' Series 5
do. Carte Inteinationale 6
$1: 2,000,000$. 'Southern Asia' Series 7
Index to the Great Thigonomethical Survey 8
Inden to the Triangulation Charts and Pamphlets 9
Magnetic Sunvey 10

PART I-TOPOGRAPHICAL SURVEY. NORTHERN CIRClE.

(Vide Index Map No. 1).
Srmmary.-This circle was under the superintendence of Lieut.-Colonel H. Wood, R.E.
During the year Nos. 2, 3, 4 Parties completed 11,528 square miles of detail survey on the $\frac{1}{2}$-inch, 1 -inch, and \therefore-inch scales, excluding 37 square miles surveyed on half-ineh scale in $1920-21$ and re-surveyed on one-inch scale in $1921-22$ and 9 square miles surveyed on eight-inclı scale.

In addition an area of 9,318 square miles was triangulated by Nos. 1,2 and 4 Parties and 289 stuare miles was traversed by No. 4 Party for detail survey next year.

The detail survey cousisted of :-

492 square	miles of half-inch original survey.	
294	$"$	$"$
of one-inch original survey.		
6,345	$"$	$"$
of one-inch revision survey.		
2,425	$"$	$"$
1,969	$"$	of one-inch re-survey.
of two-inch original survey.		

No. 22 (Riverain) Party and 23 (Punjab Rectangulation) Party (late Sind Sāgar Party) continued special work in the Punjab for the Local Government. The former carried out the usual riverain survey in the Punjab and the latter, rectangulation work in connection with the Sutlej Valley Canal and Colonisation Project.

A detachment designated the Bhopal Traverse Detachment was formed to carry out traverse work in the Bhopal State at the request of the Bhopal Durbar.

No. 20 Party (Cantonment) was re-transferred to this circle from lst A pril 1922.

No. 1 PARTY (PUNJAB, PUNJAB STATES AND UNITED PROVINCES).
 By C. C. Byrne.

The head-quarters of the party remained at Mussoorie during the whole year. The

Pbesonnel.
 Class I Officers.

Lt. G.H. Osmaston, M.C., R E.. (on probation), from 1st Way to 11th Jaly 1922.
Lt. G.F. Heaney. R.E., (on probation), from Ist May to 11 th July 1922.

Class Il Officera.

Mr. C.C. Hyrne, in charge from 18th February 1922.
" P.A.T. Kenny, O.I. ©., in charge up to 17th February 1922.
, A.M. Talati. L.e.E., from 1st July to 18th September 192%.
Major C.H. Iresbam.
Mr. R.C. Hnnsom, to 31st Jhnuary 1922.
, A.J.A. Drake. U.C.M., to 30th June 19:2.
, H.T. Hughes, to $14 t h$ March 1922.
"O.D. Jneksom.
Upper Suthordinate Service.
Mr. Sher Jang, K.B., from 27th February $19: \% 2$.
" Muhammal Husain Khan, K.s., from lGtb January to lst Septemher 1922.
" Afraz Gml Kham. K.S.. to 31st December 1921,
(, Muhammad Klian.
" Muhammad Itnsan, from lsth April 1922.
, Jit Singh llawat.
" Sijawal Klian.
" Lantif Klıan.
" Mohimmad Jamsed, (on probation), from 1st. September 1922.
\therefore Mohammad Abilns Satitar, (on probation), from 1st. heptember 1922.

Jower Suhordinate Service.
30 Survegore, etc.
health of the party has been fairly good, there were no cases of serious illness and no deaths. Malarial fever and a mild form of Influenza were however prevalent throughout the year, a large percentage of the staff being attacked at varions times.

Planc-tabling.-Except for a small area, which remained to be completed at the end of the previous year, no detail survey was done during the year. This area was included in last year's report, but the cost was not taken into account. The costrates for the whole area of 8,400 square miles, reported as surveyed last year, on the one-inch, half-inch and quarter-inch scales, are therefore Rs. 11.0 per square mile for original survey, and Rs. $15 \cdot 2$ per square mile for revision survey.

Trimuntation.-An area of 2,700 square miles, for detail survey next year, was triangulated by Mr. A. J. A. Drake, D C. M., assisted by Mr. Jit Singh Rawat. This area lies along the hills in the south-western portion of the Dera Ghāzi Khann district, of the Punjab and the adjacent portion of the Sibi district, of Baluchistan, falling in sheets $39 \mathrm{G} / 14.12 .15 .16,39 \mathrm{H} / 9.10 .13 .14$ and parts of $39 \mathrm{~K} / 2.3 .4 .5$.

The country is bare and inhospitable, supporting few inhabitants; water is scarce and generally brackish; the altitude ranges from about 300 to 4,500 feet above sea level and, except for a few
camel tracks along the larger streams, there are practically no communications. The main watershed, running roughly south-west to north-east, forms the boundary between the Punjab and Baluchistān.

The main triangulation was done by Mr. Drake; the supplementary work of fixing points in the foot hills and the plains on the east, was done by Mr. Jit Singh Rawat over an area of 1,170 square miles.

In addition to the triangulation there are in the plains a fairly large number of permanently marked village trijunctions, the geographical positions of which were fixed, in the course of previous cadustral surveys, by traverses based on twenty stations of the Principal triangulation (Indus Series). These will provide sufficient points for the revision of the existing one-inch maps covering the Dera Ghāzi Khān, Jāmpur and Rājanpur Tahsils of the Dera Gházi Khän district. The cost of the triangulation is Rs. $7 \cdot 8$ per square mile.

Recess Duties:-The party, having been in the field during the whole of the previous year, spent the whole of the current year in doing recess work. In the report of the previous year it is mentioned that the greater part of the fair-mapping of that year was done by pupils without adequate supervision; this work, in various stages of completion, has passed into this year's programme and has caused serious delay in the execution of the other work of the party. Nearly all the typing has had to be redone and the examination and correction of these sheets has been a long and very tedious process. It has been found impossible to separate the work of last year from that of the current season with any degree of certainty and consequently it has been necessary, after careful investigation, to make a distribution of the fair-mapping iu such a way as to convey a fairly accurate idea of the relative cost. The work to which this report refers covers twenty-nine sheets on the oneinch scale and seven sheets on the half-inch scale, viz:
(1) one-inch sheets :-43P/16, $\quad 52 \mathrm{C} / 8.12 .16$ and $52 \mathrm{D} / 1.2$ 3.5.6.7.9.10.11.13 to $16,53 \mathrm{~A} /$ 5.11.12.15.16, $33 \mathrm{E} / 3.7$. . 11 and $53 \mathrm{~F} / 5.13 .14$.

The area to be mapped on the above sheets $=7,7 \pi 7$ square miles.
(ii) Half-inch sheets :-
$52 \mathrm{D} / \mathrm{sw}$. se., $52 \mathrm{H} / \mathrm{sw}$., $53 \mathrm{~A} / \mathrm{Ne}$., $53 \mathrm{E} / \mathrm{vw}$. ne. se.
The area to be mapped on these sheets $=6,084$ square miles.
With the exception of Nos. $52 \mathrm{D} / 1415.16$ and $53 \mathrm{~F} / 13$ all the one-inch sheets were completed and sent for publication during the year. The sheets above mentioned were also completed, except for a few finishing touches; but the final examination and ornamentation of $53 \mathrm{~F} / 13$ remains to be done. This sheet will be completed and submitted from the field. The other three sheets will be submitted before the party takes the field, in the first week of October.

As nearly as can be calculated the area fair-mapped during the year, including the four sheets mentioned above, works out to 6,498 square miles; the cost-rate of the mapping on the one and half-inch scale, for publication on the one-inch scale $=$ Rs. $8 \cdot 1$ per square mile ; the cost-rate for mapping the complete set of 29 sheets (7,777 square miles) for publication on the one-inch scale $=R \cdot 11 \cdot 5$ per square mile.

Of the sheets to be published on the half-inch scale, the mapping of Nos. $52 \mathrm{D} /$ sw.se. and $33 \mathrm{E} / \mathrm{se}$. was taken over by No. 3 Drawing Office; the mapping of No. $53 \mathrm{~A} / \mathrm{NE}$. was completed and examined, except for the ornamentation and touching up of the limit of cultivation; the drawing of the remaining three sheets was taken in hand and carried on till the end of the year. The sheets were then transferred to No. 3 Drawing Office for completion. It is estimated that the work done is equivalent to the completion of about one sheet and a half, representing an area of 1,500 square miles. The cost-rate of mapping on the three-quarter-inch scale, for publication on the half-inch scale, works out to Rs. $3 \cdot 8$ per square mile.

The heavy arrears with which the party was burdened, the frequent changey of personnel both in the supervising and drawing staffs, the employment of pupils for fair-mapping. and the depletion of the supervising staff, are some of the circumstances which have combined to render the task, which the party has had to perform, one of peculiar difficulty. This has been felt at every stage of the work and the fact that 7,998 square miles have been successfully mapped is due to the patient and persevering efforts of those concerned.

Inspoctione.-The party was inspected weekly by the Superintendent, Northern. Circle, throughout the year and by the Surveyor (ieneral in April 1922.

No. 2 PARTY (CENTHAL INDIA, DELHI PROVINCE, RĀ.tPUTĀNA AND
UNITED PROVINCES).

By Br.-Lieut.-Colonel, S. W.S. Hamitron, D. S. O., R. E.

The normal topographical programme of the party was continued.

Personnel
 Class 1 Officers.

Bt.-Lt.-Col. S.W.S. Bamilton, I). S. O., lR. E., in charge to 28 th A pril 1922.
Captain L. H. Jackson, I. A., in charge from 29th A pril 1922.
Captain W. J. Norman, M. C., R. E. (on probation). Captain 'I'.W.R. Haycraft, R.E. (on probntion) to 31st May 1922.
Lieut. G. II. Osmaston, M. C., R. E. (on probation) to 30th April 1922.
Lieut. G. F. Heaney, II. E. (on probation) to 30th April 192\%.

> Class II Officers.

Mr. J. McCraken, M. B. E.
" C. O. Picard, to 31st May 1922.
, Doni Chand Puri.
, P. K. Ghosh, B. Sc. (on probation).
Upper Subordinate Service.
Mr. Mnhammad Husain Khan, K. S., from 22nd October 1921 to 15th January 1922.
, Mulammad IInsain.
,, Imam Din.
, Afraz Gui Khan, K.S., from Ist January 1922.
1, Jagannath.
, Narasingh Dass Joshi, B. A.
,' Mohammad Jamsed (on probation).
," Mohnmmad Abdus Sattar (on probation).
Lower Subordinate Service.
57 Survegors, etc.
(a) Original survey on the half-inch scale of sheets $54 \mathrm{~J} / 10.14$ (part).
(b) Re-survey on the one-inch scale of sheets $54 \quad \mathrm{I} / 3.7 .12 .16, \quad 54 \quad \mathrm{M} / 3.4$ and $54 \mathrm{~J} /$ 1.5.9.14 (part)
(c) Revision survey on the one-inch scale of sheets $54 \mathrm{E} / 7$ (part), $54 \mathrm{I} / 4.8 .11 .15,54 \mathrm{M} / 7.8$ and 54, $\mathrm{N} /$ /1.12.15.16.
(d) Original survey on the eight-inch scale of the headworks of the Western Jumna Canal.
(e) Triangulation for original survey on the half-inch scale in sheets $54 \mathrm{~F} /$ (less $54 \mathrm{~F} / 1.5$ and parts of 9.13) and in sheet $54 \mathrm{~J} /$ (less $54 \mathrm{~J} /$ 1.5.9.13).
(f) Traversing for original survey on the sixteen-inch and sixty-four-inch scales in the Municipal areas of Allahābād City.
(g) Traversing of the boundaries of demarcated areas of leased land in Imperial Delhi.
(a) The country surveyed on the half-inch and one-inch scales consisted entirely of cultivated plains, for the most part open and easy except in a few places where trees were numerous. There was a great deal of broken ground along the banks of the Jumna and Chambal rivers. Along the tributaries of the Jumna in Jalaun and Cawnpore districts, this broken ground, though not of great height or difficult of negotiation was much spread out over the country; while that along the Chambal, was from two to three miles in width on either side of the river, forming deep ravines, averaging a hundred and more feet in height, and broken up into pinnacles or flat tops with cliffs on all sides impossible of access. The tracks followed the main streams and were few and far between and mostly only fit for foot traffic. There were no hills in the areas surveyed.

The head-quarters opened in the field at Agra on tae 2nd November 1921 and re-opened in recess at Mussoorie on the 4th May 1922. The health of the party was excellent.

Planc-talling.-As in the previous two field seasons, all first year soldier surveyors and a large number of the pupil survevors in the circle, numbering 11 and 6 respectively, were attached to No. 2 Party for training. In addition, there were four Class I, one Class II and two Upper Subordinate officers on probation. The country lent itself well for training purposes, though it was not possible to give any real instruction in contouring or in the depiction of hill features. It is hoped that it will prove possible to give such instruction next year when the party will be working in the hilly areas of Gwalior and Eastern Rajputina.

The party was divided into 5 camps as given in the table below :-

Nio. of camp.	Name of camp oflicer.	Cump Headqunrters.	No. of sarvejors	No. of oficers under ins- traction. Soldier surveyors and papils.	Sheets surveyed.	Scale and cless of survey.
1	Mr. Md. Husain Khan, K. S., and later Mr. J. McCraken M.B.E.	Akbarpur and Bhind	10 9	1 2	$54 \mathrm{~N} / 11.12 .15 .16$ 54. J/10. 14	1-inch revision. $\frac{1}{2}$-inch original and 1 -inch re-survey.
2	Mr. C.O. Picard	Mainpurī	12	7	54. M/3.4.7.8	l-inch resurvey and l-inch revision.
3	Mr. Imam Din	Shikohābād and Ghiror	6	9	$\begin{aligned} & 54 \mathrm{I} / 11.12 .15 .16 \& \\ & 54 \mathrm{~J} / \mathrm{g} . \end{aligned}$	do.
4	1st class surveyor Khushal Khan and later Capt. T.W.R. Haycraft, R.E.	Tūndla	7	9	$54 \mathrm{I} /$ 3.4. 7	do.
5	lst class surveyor Abdul Aziz Khan and later Capt. W. J. Norman, M.C., R.E	Pināhat	6	5	$\begin{aligned} & 54 \mathrm{I} / 8 \mathrm{nnd} \\ & 54 \mathrm{~J} / \mathrm{I} .5 . \end{aligned}$	l-inch re-survey and l-inch revision.
	Under O.C. Partr	1		$54 \mathrm{E} / 7$	$\begin{aligned} & \text { l-inch } \\ & \text { revision. } \end{aligned}$

In cases where surveyors worked under two different camp officers, they are counted as having been in each camp. Mr. Afraz Gul Khad, K.S., was attached to No. 1 Camp for a short period during the season, for instruction in a camp officer's duties. Mr. D.C. Puri did not have an ordinary camp charge but was employed in teaching and helping the officers and surveyors in charge of Nos. 4 and 5 Camps, none of whom had previously any experience of these duties; in addition he geuerally supervised the instruction being imparted to their men under training. He was also in charge of the traverse work in Allahäbäd City and in Imperial Delhi.

1-inch revision survey was carried out by trained and partially trained surveyors, while 1 -inch re-survey, which was specially arranged for them in lieu of revision survey, was done by all the officers under instruction and by the first year soldier surveyors and pupils. Later in the season the two junior Class I officers were given an area of original survey on the half-inch scale, the two sheets of which had been specially included in the programme with a view to these officers' instruction.

The one-inch survey was based on old revenue traverse data supplemented by new trarerse work carried out the previous season in sheets $54 \mathrm{~J} / \mathbf{1 . 5 . 9}$, while the balf-inch survey was based on triangulation, observed and computed in the field earlier in the same year.

For the initial period of instruction, a convenient area of one-inch re-survey, not too difficult. but containing as much variety of detail as possible, was selected for each camp. The graticules, traversed trijunctions, scales, lists, etc. of this area were plotted in recess, on to a half Bristol board, one for each man under training. Each camp officer then devoted from a month to B weeks, within the area selected, to the individual training of his men according to their several capabilities: after which, if the officer in charge of the party way satisfied with their progress, the men were given separate and independent plane-table sections. These they had helped to prepare during their collective training, the plotting being done by the men themselves. The officers in charge of Nos. 2, 3 and 4 Camps were each allowed one first
class surveyor to assist them until their men under instruction could work independently and without frequent supervision. This period was found to vary from 6 weeks to 2 monthe.

In order to give a greater usefulness to the published sheets, the heights along main canals and distributaries have been obtained from the various Executive Engincers concorned and selected values have been inserted on the fair maps in these areas in the plains where no other information was available. A note to this effect has been entered on the plane-table sections. Where possible these were compared in $1920-21$ with levelled bench-marks and other traversed heights and were found not to vary more than two or three fect.

The survey of the Headworks of the Western Jumna Canal, undertaken at the request of the Superintending Engineer of the Irrigation Circle, on the eight-inch scale was a small, simple, and straight-forward piece of work which calls for no special remark. It was based on triangulated points from the Himalayan triangulation and was carried out by a surveyor on deputation working directly under the Executive Engineer.

Out-turn and cost-rates are given below :-

Scale.	Cluss of surver.	Area in square miles.	Cost-rate per square mile. Rupees.
$\frac{1}{2}$-inch	Original	4.92	$22 \cdot 1$
1 -inch	Re-surve.	2,425	$16 \cdot 9$
1 -inch	Revision	2,694	$12 \cdot 8$
8-inch	Original	9	$121 \cdot 3$

The cost-rate for half-inch original survey is very high due to various reasons; the triangulation being done the same season, the data in consequence were not ready earlier and it proved necessary to move a number of surveyors to small areas, in many cases from long distances, to ensure that the survey was completed in the season, thus causing extra expense. Also this survey has to bear the charges of pay of the two junior Class I officers under instruction during the period, as well as the pay of senior surveyors, sufficiently trained to complete the work efficiently and well. The cost-rate for one-inch re-survey has also been adversely affected by the charges of pay of officers under instruction.

Triangulation.-In its course of progress the party has now reached Gwalior State in Central India and the Indian States of Eastern Rajputina, and the country triangulated was of a different nature to the heavily cultivated plains of the United Provinces. The country covered by sheet 54 F and the south-west portion of 54 J consisted for the most part of small ranges of hills varying in height from 900 to 1,400 feet, outcrops from the Vindhya Range to the south. These were mostly covered with long grass and dense jungle, and often proved difficult to negotiate. Communications were poor and habitations sparse, but on the whole the country was easy to triangulate, though necessitating extensive clearing and requiring many stations. The central and sonth-east portions of $5+\mathrm{J}$, though not heavily caltivated, nevertheless, owing to their flatness, to numerous trees round villages, and to the absence of hills, also necessitated a very large number of stations and required a careful and intelligent reconnaissance. The work was based on the Great Are Meridional and on the Budhon Series, which run parallel through the area from north to south, and on the old Givalior and Central India Topo. Triangulation. A large number of the upper markstones of the G. T. series, and in many cases the lower markstones also, were found missing, and a special report on this matter las been submittel to the Superintendent of the Trigonometrical Survey. The triangulation of sheet 54 F (less $\mathrm{F} / \mathbf{1 . 5}$) was done by Mr. P. K. Ghosh, B.Sc., Extra Assistant iuperintendent, who completed an area of $3,500 \mathrm{square}$ miles, and that in 54 J by Mr. Jagannath, Sub-Assistant Superintendent, who completed an area of 3,0ti0 square miles.

The triangulation of sheets $54, \mathrm{~J} / 10.14$ was completed in the field. Its survey on the half-inch scale, completed during the ame season for the instruction of officers under training, is referred to under plane-tabling above. The total out-turn was 6,560 square miles and the cost-rate per square mile was Rs, $2 \cdot 0$.

Traversing.-The traverse of Allahābād City and its Municipal areas for detail survey on the sixtcen-inch and sixty-four-inch scales, commenced in 1920-21 for the Allahīand Improvement Trust, was continued in December 1921 and completed in February 1922. The work was in chargs of Mr. Duni Chand Puri, Extra Assistant Superintendent, with two traversers and two computers, computation being carried out pari passu with the traverse. Twenty-one plot charts of the work in the sixty-four-inch area, which were urgently required for detail survey, were completed in the field. (See also Part III-Special Reports).

On the completion of work in Allahäbid, the traversers and computers were transferred to Imperial Delhi to undertake the traverse of the boundaries of demarcated areas in the New City, which have been, or are to be, leased in perpetuity to the holders. The traversers were started on work by Lieut.-Col. S. W. S. Hamilton, D.S.O., R.E., a main line being run across the area of the Imperial City from north to south via Kutab Road, Prithvi Raj Road, Hardinge Avenue, Lytton Road and l'anch Kumar Road, joining up Pillars Nos. 607 and 201 of the boundary traverse of Imperial Delhi executed by No. 18 Party in 1915-16, the various sub-traverses required to connect up the area demarcated being taken off this main line. The work and the number of stations required entailed considerably more labour than was originally expected, but by keeping the traversers out until the end of April all the work asked for was completed.

No traverse work for topographical survey was undertaken.
Cost-rates are given in the table below :-

Stale of detnil sarvey	Place	Area in ncres	No. of traverse stations	Linear miles clazining	Cost-rate per linear mile Rs.
16-inch	Allahābād	$31 \cdot 91$	514	78	$18 \cdot 0$
6 t-inch	do.	$\begin{aligned} & \text { (sq. miles). } \\ & 1,3.2 t \cdot 8 \end{aligned}$	623	35	79•7
12-inch (boundary traverse)	Delhi	9+1-2	1,188	57	$58 \cdot 8$

The cost-rates given include computation of the work.
Recese Imies.-For the purpose of fair-mapping the party was divided into four sections as given in the table below :-

So of section	Name of Section oflicer.	$\begin{gathered} \text { No. of } \\ \text { riraftsmen. } \end{gathered}$	No. of sheets.	Scale of fairdrawing.
1	Mr. J. Mc Craken, M. B. E.	7	$54 \mathrm{~N} / 11.12 .15 .16, \mathrm{~J} / 14,54 \mathrm{~J} / \mathrm{NE}$.	$1 \frac{1}{2}$-inch and 3-inch
2	Captain W.J. Norman, M. C., R. E.	5	54. M/3.4.7.8	$1 \frac{1}{2}$-inch
3	Mr. Imam lin	6	$54 \mathrm{I} / 11$ 12.15.16, J/9. $54 \mathrm{E} / \mathrm{Ne}$.	$1 \frac{1}{2}$-inch and a-inch
1	Mr. D. C. Puri	5	54.J/1.5 \& $\mathrm{I} /$ 3.4.7.8	$1 \frac{1}{2}$-inch

lifteen one-inch sheets have been submitted in September 1992 and the remaining one-inch and half-inch sheets will he submitted before the party leaves for the field. No. 2 Party will thus have no arrears of fair-mapping. The outline of 3 shects, viz., $5+\mathrm{J} / 9.14$ and $\mathbf{+}$ I/16 has been drawn on contract overtime system adopted in this party last recess. An estimate is made of the number of hours required and the draftsman, who must have first; class fualitieations, is then given the sheet to draw entirely out of oflice hours, being paid his overtime on completion, with the proviso, howeve, that any corrections must be carried out by him as overtime wilhout payment. The amount expended on overtime payments during recess will total Rs. 14 .

The cost-rates of fair-mapping are given below:-

Scale of fair-mapping.	Aren in spluare miles.	Cost-rate per aquare mile. Rupees.
$1 \frac{1}{2}$-inch for 1 -inch sheets	5,004	$6 \cdot 7$
$\frac{8}{4}$-inch for $\frac{1}{2}$-inch sheets	1,749	$3 \cdot 0$

A section was also maintained under Mr. Afraz Gul Khan; K. S., for the training of soldier surveyors and pupils. Four soldier surveyors reverted to their units during recess. Captain T. W. R. Haycraft, R. E. (on probation) and Mr. C. O. Picard were transferred to No. 3 Party and No. 3 Drawing Office respectively from Jst June 1922, and Lieutenants G. H. Osmaston, M.C., R. I. and (I. F. Heaney, R. E. (both on probation), were transferred to No. I Party from lst May 1922.
(l) A section composed of one triangulator, 2 traversers and 2 computers, under $\mathbf{M r}$. P. K. Ghosh, B. Sc., has been employed throughout the recess on the computation of last season's triangulation for original survey on the half-inch scale, the preparation of traverse plot charts from the old traverse records of Agra district for re-survey on the one-inch scale, and the preparation of traverse plot charts of $1920-21$ traverse for original survey on the half-inch scale, required for next season. The computation of the traverse of Allahäbād City has also been completed, and 9 plot charts for detail surver on the sixty-four-inch scale and 14. plot charts for detail survey on the sixteen-inch seale have been drawn and sent to the Chief Eingineer, Allababad Improvement Trust I schedule, together with an index plot chart, of the boundaries of demarcated areas traversed in the New City of Imperial Delhi has been prepared in book form in recess, and supplied for record to the Chief Engineer, P. W. D., Delhi. Other miseellaneous work has consisted in keeping the party records, etc., up to date, preparation of Bristol boards for training of next year's pupils, preparation of Index maps, ficld progress charts, triangulation charts, and extraction of data for the continuation of the survey of the Western Jumna Canal on the scale of $1 / 4,000$.

Miscellaneons. - There were no marked physiographical changes in the area that came under survey during the year.

Inspections.-The party was inspected once by the Surveyor General and on numerous. occasions by the Superintendent, Northern Circle.

No. 3 PABTY (UNI'TED) יROVINCES).

By Maron C. (i. Lewis, R. E
During the year under report the survey of the Garhwal and Kumaun hills on

Prhsonnel.
Clus.s I Officerar.
('aplain I.H. Jnekson, I. A. in clinger uple 291 h April 1929.
Mator C.G. Lewia, 1 li.. in charge from 2 gth April 1922.
(:apain T.W.R. Iageraft, R. li. (on probetion). Cromi lat Tune lig2.

```
Clase I/ Officers
```

Captain I.H. Williams, up to Jlth May 19zz.
Mr E.IS. West, up to lith Jnly 1922.
L. Willinme, M. I. E.
, I.H Johnson.

- A.I.A. Drake. D.C.M.. [rom 1st July 1922

Lower Suhowlante Service.
88 Snrpeyors, etc.
the two-inch scale was continued, the area required by the Forest Department being nearly completed. The field head-quarters were moved from Bareilly to Almorin, where the party office opened on 7th November. Nos. 1 and 2 Camps took the field earlier than the remainder of the party in order to complete the survey of the higher ground in their areas before the arrival of the snow. They reached their respective head-quarters at the end of October.

The area surveyed consisted of high hills, densely wooded on the northern slopes, and deep vallers, the lower slopes being terraced for cultivation.

The three camps completed their work by the 24th February, :Oth March and 9th April respectively.

The health of the party was very good. The 17 surveyors of Nos. 1 and 2 Camps
reported a total of only 4 days of sickness during the season. No. 3 Camp averaged 1 day's siekness in 2 months. Surveyor Adalat Khan died on 25 th October while on leave and surveyor Farman Ali was killed on 30th January by an accidental fall on a dangerous hill side.

Plıne-talling.-The programme comprised survey in 19 two-inch sheets distributed in three camps as follows:-

No. 1 Caimp, under Mr. West, (head-quarters, Gwaldam) sheets $53 \mathrm{~N} / 4 \mathrm{~s}$ part). 8 S (part). 12 S .16 S .

No. (: Camn, under Mr. L. Williams, (head-quarters, Sandeh and later That) sheets $62 \mathrm{~B} / \mathrm{s} .8 \mathrm{~s} .12 \mathrm{~s}$ and $62 \mathrm{C} / 1 \mathrm{Nks.jNss}$ (part). 9 N (part). 9 s (part).

No. 3 ('amp, under Captain J. H. Williams, (head-quarters, Pithoragarh), sheets $62 \mathrm{C} / 2 \mathrm{~N}$ s s. 3 N .6 N (part) 6 s (part). 7 N (part).

The Nepril boundary following the Kali river formed the eastern limit of the work though a considerable area in Nepal was surveyed by "sketching" from the British side.

In sheets $53 \mathrm{~N} / 16 *$ and $62 \mathrm{~B} / 4 \mathrm{~s} .8 \mathrm{~s}$ some of the reserved forests extend beyond the north margin of the sheet. As there are no reserves in the area to the north, these forests were completely surveyed, the over-lapping portions being mapped as outriggers.
'The country surveyed by Nos. 1 and 2 Camps consisted of very high ground, the hills in sheets $62 \mathrm{~B} / 8.12$ rising to 19,000 feet and the average height of vallers being 6,000 to 7,000 feet. Work was completed in the higher ground by the 15 th January, when heavy falls of snow occurred which would have made further work in that area impossible. The bighest fixing made by a plane-tabler was at 14,950 feet, while several were made at over $1+, 000$ feet.

In the high ground the hills were mostly devoid of trees, except on the northern slopes. The high level reserved forests which are little exploited, have no compartment boundaries and their external boundaries were as a rule easy to locate; these factors combined to simplify the work of the plane-tablers. In the remaining area chiefly surveyed by No. 3 Camp, the hills were for the most part densely wooded and boundary pillars were difficult to find ; in the vicinity of Pithoragarh the country was in addition extremely intricate.

Communications were bad throughout the area, especially in the higher ground; only cooly transport could be employed.

The survey of the Kumaun hills on the tro-inch scale was undertaken in 1915 in the interests of the Forest Department and for three seasons prior to the year under review, owing to the fact that the greater portion of the area surveyed consisted of reserved forests, the whole area was surveyed on the two-inch scale to avoid inconvenicut changes of scale. This policy was pursued during the current year although the reserved area was only 540 square miles out of a total area surveyed of 1,969 square miles.

Discrepancies between boundaries, as demarcated on the ground and as notified were as a rule reconciled in the field by reference to the Forest officials, but in the higher reserves it was found that many boundary pillars had been erected in positions differing widely from those described in the notifications, being sometimes located far outside the reserve to which they belonged. In these cases the boundary as notified has been correctly shown on the fair maps.

The cost-rate of plane-tabling on the two-iach scale was Hs. $51 \cdot 6$ per square mile. This figure should be taken in conjunction with that for the average number of fixings per square mile, viz., 6.2. As the bulk of the area lay in high, sparsely inhabited hills only a small proportion of which consisted of reserved forests, surveyors were instructed in the case of non-reserved areas, to relax the standard of detail required by the scale and to carry out plane-tabling as for the one-inch scale. The cost-rate is thus not representative of rigorous ?-inch survey. The fact that it is as high as the previous season is due to the very higl, cost of transport and to the total absence of local supplies.

As it was impossible to purchase supplies of any sort in the area under survey, arrangements were made beforehand with Army head-ruarters to draw rations for the party on payment from the $1 / 3$ Q.A.O. Gurkha Rifles at Almorā. The cost of rations was recovered monthly from those to whom they were issued and was refunded in cash to the Officer Commanding 1/3 Gurkha Rifles.

Each camp officer entertained from 50 to 80 permanent Nepālese coolies. These were used for moving camp officers' and Surveyors' camps and for the distribution of rations from camp head-quarters to surveyors. For the conveyance of rations from Almora to the head-quarters of the three camps, $1 \frac{1}{2}$ troops (144 mules) of the 23 rd Pack Mule Cadre, complete with personnel, equipment etc., were hired at a cost of Rs. 16 per mule per mensem. In August arrangements for the supply of dumps of grass at prearranged camps were made with the Forest Department. The mule cadre supplied their own rations for men and animals, which had to be carried with them on convoy work. This meant that for a trip of 5 marches to camp head-quarters and back (viz. 9 days) only 70 mules were available for the party rations, the remainder being required for the rations and kit of the mule cadre.

A time-table of marches for the mule convoys was drawn up by the Officer in charge, by which each camp was rationed on an average every five weeks. This time-table was strictly adhered to by the convoys. The routes were in a very bad state of repair, which resulted in accidents to mules on several occasions, though only one animal was killed during the season. No local transport could have operated continuously on these roads under such conditions. The cost of this transport was high, but was well repaid by the gain in time and efficiency, which enabled the survey of the high ground to be completed before the coming of snow.

Triangulation.-. The programme included the triangulation of sheets $\mathbf{0} 3 \mathrm{~N} /$ 1. 2. 3. 6. 7 but it was found impossible to attempt this work orving to the difficulties of supply and transport in Garhwäl district, and it was abandoned.

No traversing was carried out.
Recess Duties.--The fair-mapping including 16 sheets of arrears which remained over from last year. was distributed in three sections-

No. 1, under Mr. West and later Mr. Drake.
Current 2 -inch sheets $53 \mathrm{~N} / 4 \mathrm{~s} .8 \mathrm{~s} .12 \mathrm{~s} .16 \mathrm{~s}$.
Arrears 2-inch sheets $53 \mathrm{~J} / 16 \mathrm{~N}, \mathrm{~N} / \nsim \mathrm{N} . \mathrm{O} / 16 \mathrm{~N}, 62 \mathrm{C} / 3 \mathrm{~s}$.
Arrears 1 -inch sheet $53 \mathrm{O} / 16$.
No. 2, under Mr. L. Williams.
Current 2-inch sheets 6 ($2 \mathrm{~B} / 4 \mathrm{~S} .8 \mathrm{~s} .12 \mathrm{~s}, 62 \mathrm{C} / 1 \mathrm{~N} \in \mathrm{~S} .5 \mathrm{~N} \in \mathrm{~S} .9 \mathrm{~N} \in \mathrm{~S}$.
Arrears 2-inch sheets $53 \mathrm{O} / 1 \mathrm{sin}$, 8 s, $62 \mathrm{C} / 4 \mathrm{~N} .8 \mathrm{~N}$.
Arrears 1 -inch sheets $62 \mathrm{C} / 4 . \mathrm{N}$.
No. 3, under Mr. Johnson.
Current 2-inch sheets $69 \mathrm{C} / 2 \mathrm{~N} \& \mathrm{~S} .3 \mathrm{~N} .6 \mathrm{~N}$ \& S .7 N .
Arrears 2-inch shects $53 \mathrm{O} / \mathrm{M} \mathrm{N} \times \mathrm{s} 14 \mathrm{~N} \& \mathrm{~s}$.
Arrears l-inch sheets $53 \mathrm{O} / 12$.
Captain Haycraft assisted in the examination of sheets for No. 3 section.
Considerable use was again made of overtime, 4 outline sheets and 3 contour sheets were drawn on contract and all typing in overtime was done as "piece-work," special rates being worked out for the various items such as village names, spaced names, heights and contour values.

The cost-rate of 2-inch fair-mapping for 2-inch sheets was about Rs. $25 \cdot 0$ per square mile. Owing to the arrears it is impossible to estimate accurately the area of mapping actually completer.

Eight arrears sheets have been submitted for publication and it is anticipated that the remainder will be submitted by the close of recess. The current sheets are well advanced; they will be completed by a small party drawing section during the cold weather and should all be submitted before the commencement of next recess.

Inspections.-The party was inspected once in recess by the Surveyor General and was visited weekly by the Superintendent, Northern Circle, throughout the recess season.

No. 4 PaRTY (UNITLED PROVINCES).

By M. C. Petters.

This party whicb had been in abeyance since 1017 took the field in full strength and

Personnel. Class I Officer.
Mr. M. C. Patiers, in eharge to 13th March and from 25th Murch 1922.

Class $1 I$ Officers.

Mr. G. A. Norman, M.B.E., from 10th December 1921 to 131 h March 1922 and from 25th March 1922, n charge from lith to 24th March 1922.
Mr. F. C. Eaint. to 30th April 1922.
.. Moqimıddin, from 1st Jnne 1922.

Upper Subordinate Service.

Mr. Chnoi Lal Kapur.
, Lakshmi Dutt Joshi.
., Vidya Dhar Chopia.
. L.altan Khan, I. I. S. M., to 10th April 1922.
., Mol;ab,ut Lal Kobli (on probation), from 17 th October 1921 to 15th September 1922.
.. Nararana Cbandra ling (on probation), from 2oth May 1922.
.. Jalıp Singh Gandbi (on prohation). from 29th May 1922.

Lomer SuLordinate Serrive

36 Survesors, elc. completed the detail survey on the one-inch scale of sheets $63 \mathrm{M} / 3.7 .8 .11 .12 .15 .16$ and $63 \mathrm{~N} / 9.10 .11 .12$. 13.14.15 16. The party also completed the triangulation of the hilly tract in sheet $63 \mathrm{M} / 15$ and the traversing of the cultivated plains in Nepal lying in sheets $63 \mathrm{M} / 3.7 .11 .15$.

The reserved forest areas are densely wooded ; the remainder of the country consists of well cultivated plains dotted over with lakes, marshes and numerous groves of mango trees and intersected by several rivers the principal of which are the Gogrā, Gandak and Räptī.

The field season opened on the 7 th November 1021 and closed on the listh March 1922. The field head-quarters was at Gorakhpur.

The health of the party was on the whole very good, but there were a few cases of malarial fever among the men working in the Nepal area.

Plane-tabling.-The nature of most of the country surveyed is flat and highly cultivated with some hilly ground in the north-eastern corner. The reserved forest areas are densely wooded. The detail survey of the hilly area in sheet $63 \mathrm{M} / \mathrm{s}$ and of the plains of Nepal was based on points fixed respectively by triangulation and traversing during the current season. The survey of the remaining area except sheets $63 \mathrm{~N} / 9.10$ was carried out on blue prints of existing one-inch sheets, the plane-table traverses being based on the positions of trijunction pillars as shewn on the blue prints.

The work was divided into four camps as follows :-
No. 1 Camp, under Mr. F. C. Saint with 11 surveyors completed the revision survey on the one-inch scale of sheets $63 \mathrm{M} / 8.12 .16$ and $63 \mathrm{~N} / 13.14$. Mr. Chopra was placed in this camp but proceeded on medical leave very shortly after the field scason commenced. Towards the end of the season the camp was strengthened by 4 surveyors transferred from the Traininer Camp.

No. $\mathrm{O}^{\text {Camp-Mr. (i. A. Norman, M. B. E., took over charge of this camp on the }}$ 18 th December 1921 from Mr. Lakshmi Dutt Joshi who proceeded on medical leave, and expecuted the revision survey on the one-inch scale of sheets $63 \mathrm{~N} / 11.12 .15 \mathrm{li}$. The camp originally consistel of ! surveyors, but during the last month of the field season, was strengthened by :3 pupils from the Training Camp who had completed their allotted work in that camp.

No. 3 Cam, under Mr. Chmi Lal Kapur with 8 survevors completed the one-inch original surver in Nepal and the one-inch revision surver of the remaining area in sheets
 the close of the field season.

No. 4 Cam, formed•a training camp round Pipraich under Mr. Laltan Khan, I. D.S. M. One Tpper Subordinate officer and 13 pupils were instructed in plane-tabling and torether completed the one-inch surver of sheets $63 \mathrm{~N} / 9.16$. The survey was based on the plotter positions of village trijunction pillars whose coordinate values were obtained from Revenue traverse recorts. The area has been treated as revision survey. light of the pupils on completing their allotted areas were transferred towards the close of the season to other camps.

The out-turns and cost-rates are as follows:--
One inch original survey 294 square miles at Rs. $8 \cdot 2$ per squaremile.
One inch revision ., 3691 ,, at Rs. $13 \cdot 8$,"
The cost-rate for the original survey is less than that of the revision survey owing 10 the nature of the country in Nepal being less intricate than the United Provinces and to the fact that the most experienced surveyors were employed on the work.

Triangulation.-The nature of the country is undulating and hilly and covered with dense forest growth. It was intended that the triangulation should emanate from the base Chanda T.S.-Balua T.S., geodetic stations of the North-East Longitudinal Series, but owing to heavy tree growth having sprung up between these tower stations since they were built, after a good deal of tree-felling had been done, to save time, it was considered expedient to abandon the line and start the triangulation from the base Balua T.S.-Bararh.s., the latter of which is a minor station. Mr. M. L. Kohli triangulated an area of 58 square miles in sheet $63 \mathrm{M} / 15$ to fix sufficient points and heights for the detail survey.

The cost-rate including computations is Rs. $18 \cdot 9$ per square mile.
Traversing.-A total length of 133 linear miles of traversing with heights, representing an area of 289 square miles, was run by 2 traversers in the highly cultivated plains of Nepāl comprised in sheets $63 \mathrm{M} / 3.7 .11$. $\overline{5}$ to supply data for the original survey.

The cost-rate including computations is Rs. 15 per square mile.
Recess Duties.-These comprised the fair-mapping on the scale of one and a half inch to a mile for publication on the scale of one inch to a mile of fifteen sheets surveyed during the year, and the final computations of triangulation and the plotting of village trijunction pillars for 2 one-inch sheets from Revenue traverse records for instructional purposes for next field season. The work and personnel was divided equally into three sections as follows:-

No. 1 Section, under Mr. G. A. Norman, M. B. E., was allotted the fair-mapping of sheets $63 \mathrm{~N} /$ 11.12.14.15.16.

No. 2 Section was placed in charge of Mr. Moqimuddin who was responsible for the completion of the fair-mapping of sheets $63 \mathrm{M} / 8.12$ and $63 \mathrm{~N} / \mathrm{g} .10 .13$.

No. 3 Section, under Mr. C.L. Kapur carried out the fair-mapping of sheets $63 \mathrm{M} / 3.7 .11 .15 .16$.

An area of 3,671 square miles at a cost-rate of $R s .7 \cdot 4$ per square mile was fairmapped.

Sheets $63 \mathrm{M} / 3.7 .11$ and $63 \mathrm{~N} / 9.10$ were submitted for publication before 30th September 1922 and the remaining sheets $63 \mathrm{M} / 8.12 .15 .16$ and $63 \mathrm{~N} /$ 11.12.13.14.15.16 will be completed before the party takes the field.

The final computations of triangulation were completed by Mr. C. L. Kapur assisted by a computer.

Miscollaneons.-Owing to the non-co-operation movement, which had made itself felt in some parts of the area under survey, it was often difficult to obtain carts and those secured had to be paid for at any fancy price the owner chose to name. This movement culminated in the holocaust at the police station at Chauri Chaura, 12 miles from Gorakhpur on the 4 th February 1922.

At the request of the United Provinces Government and with the concurrence of the Benares State Durbar, Mr. M. C. Petters was placed on deputation from the lith to the 2 Ith March 1922 to examine and report on the disputed boundary between Benares State and United Provinces lying along the Ganges river. The dispute, which dates back to 1848, is due to the lateral movements of the river and reaches an acute stage whenever sufficient silt has been deposited by floods on the sand banks to make them cultivable. The main point in dispute was whether the southern boundary of Benares State in the area concerned was a fixed line or whether it should vary according to the movements of the Ganges river. After examining all old maps forwarded by the parties on both sides and previous rulings on the sulbject, a surver on the eight-inch scale was prepared and it was decided that the southern boundary of Benares State followed a fixed line. The area is sandy and subject to annual inundation ; the depth of water and a strong current during the raing season will not allow boundary marks to remain. Three guide pillars weve accordingly built in a straight line from which it will always be possible to relay the boundary line marked on the original survey with the aid of a planc-table and magnetic compass. In the event of one of the guide pillars being destroyed, the boundary can still be laid down with precision.

There were no arrears of fair-mapping from previous seasons.
The beds of the Gandak and Gogra rivers have altered their courses appreciably to the west and south since the last survey in the early eighties.

Insprctions.-The party was inspected by the Surveyor General on the 20th April 1022 ; it was also inspected once during the field season and weekly during the recess season by the Superintendent, Northern Circle.

No. 20 PARTY (CANTONMENT).

By C. E. C. Frencif.
During the year the party continued survey operations in the Southern Circle, and on

Prisonnil.
Chass I Officer.
Captain J. K. Donglas, R. E., in charge to $16 \mathrm{l}_{\mathrm{h}}$ October 19:1.

Class II Officers.

Mr. J. H. S. Wilson, up to :3st Jnmary 19으.
, C. I. C. French, in charge from 17th Octoler 1921.
" F W. Smith, from 13th Febraary 1923.
Itpper Subordinale Service.
Mr. Minrmu, to 30th June 1922 .
, J. M. Mukerji.
Somes Suhordinate Service.
28 Surveyors, etc. the lst April 1922, came under the administrative control of the Superintendent, Northern Circle. A temporary suspension of the field operations was considered necessary as the ficld work showed signs of outstripping the pace of the drawing; the party was therefore collected at Dehra Dūn during the hot weather months to deal with the mapping.

The health of the party has been good throughout the year.

Plane-tubling.-The cantonments of Deolili and Ahmadābād werc surveyed on the sixteeninch scale, with their bazzurs on the sixty-fourinch. The remaining sixteen-inch areas in the Civil and Military Station of Bangalore and remnants of the bäzar areas on the scale of filty feet to one inch were also completed, the aggregate areas on these scales being $5,025 \cdot 0$ acres on the sixteen-inch, $106 \cdot 36$ on the sixty-four-inch and $65 \cdot 63$ on the fifty fect scale respectively.

An area of $40 \cdot 21 \mathrm{~s}$ suare miles at Deolnli was surveyed on the six-inch scale for the purpose of illustrating future military developments.

The accuracy of the field work has been tested by a chain-line of 60.60 linear miles and 206 in situ fixings.

Trarersing.- 31.94 linear miles were done by Mr. Dharmu and surveyor Arthur Francis; 06 stations being fixed, the average number of stations per mile being $3 \cdot 01$ and the costrate Rs. ${ }^{2} 37 \cdot 66$ per mile.

Lerelling.- The proximity of standard bench-marks in these cantonments offered a good opportunity of testing the accuracy of the existing heights, previously obtained by triangulation and traverse; these proved very satisfactorily and in no case were alterations of more than a foot found necessary.

Messrs. Dharmu, Mukerji and one surveyor completed 96.83 linear miles of levelling in these cantonments at a cost of Rs. $18 \cdot 30$ per mile.

Recess Duties.-The fair drawings of Pallãvaram, St. 'Thomas's Mount, Poonamallee, Velichi and West Hill comprising 39 sheets have been submitted for publication; the remainder comprise Secunderābād, Cannanore, Madras Military Lands, llangalore, Deolāli and Ahmadabuel in 96 sheets, the mapping of which is well in hand.

Inspections.-The party was inspected by the Superintendent, Southern Circle at Deolāli on the 29th January 1922 and by the Superintendent, Northern Circle at Dehra Dūn on the 24th July 1922.

No. 22 (RIVERAIN) PARTY (PUNJAB;.
By Dhini Ram Verma, Rai Sahib.
The programme of the party consisted in traversing the riverain estates along the

Prrsonnel.
Cluss I Officer
Mr. II. II. H. Ilanby, in charge from luth Febrary 10 31 st Anguast 1922.
Class II Officer.

Mr. Ohmi Kam Verma, II. S., in charge up to 9th Febraary $19: 2$ and aunin trom lat September 192: and atrached in the intervenivg periont.

Cpur, anhorlinate Serrice.

Mr. Jaman Prasal, R.N.
" Llam Narayan Hastir.
" Guiab sit,gh, np to th Normber 1921. 1 sopervianc.

Lnwer Swiordinate Serrice.
33 Traveracra, etc. and 22 parely tempoiary traversers elc.

Indus, Chenảb and Panjnad rivers in Muzaffargarh district for cadastral survey by the Settlement Department and survey of Lahore "Naznl" land in continuation of last year's work.

The field season opened on the 1st October 1921 and closed on the 25th March 1922.

Special survey of Khaur oil fields in Attock district was undertaken in recess. It lasted from the 17 th April to 27 th July 1922.

The head-ruarters of the party remained at Lahore throughont the year.

The health of the party was, on the whole, good. Several men working on the Indus suffered from malarial fever in the carly part of the season.

Mr. Gulab Singh and traverser Itrat Husain were compelled to take leave from the 5th November 1921 and (ith January 1922 respectively. Three khalãsis died of malaria.

The detail traversing on the Indus in Alipur tahsīl was carried out under Mr. Jamna Prasad, R.S., and in Muzaffargarh tahsīl under Mr. Gulab Singh and subsequently under traverser Roda Ram and on the Chenāb and the Panjnad in Alipur tahsil under Mr. Ram Narayan Hastir. The base lines on the Panjnad were laid out under Mr. Ram Narayan Hastir. At the request of the Settlement Officer, Muzaffargarh, the missing pillars of old base lines along the Indus in Alipur and Muzaffargarh tahsi/s were relaid under Mr. Jamna Prasad, R.S., and traverser Roda Ram respectively. The traversing and topography of the Khaur special survey was curried out by Mr. Ram Narayan Hastir himself as no surveyor was available. The Lahore "Nazul" land survey was done directly under the officer in charge of the party.

During the field season the computing and masini sections at the head-cquarters were supervised by computer Badlu Ram and draftsman Makbul Husain respectively.

The party continued the work of traversing and laying down base lines. 2,269 linear and 413 square miles of minor traverse in the Indus, Chenāb and Panjnad riverain tracts in Muzaffargarh district were executed, 10,284 theodolite stations in 84 villages were fixed. 213 corners of 71 squares in 246 square miles were demarcated with permanent mark-stones on both banks of the Panjnad river in Muzaffargarh district and Bahāwalpur State, to serve as bases for future survey and demarcation of boundaries and fields in the bed of the river. 27 missing stones of 9 old base lines along the Indus river in Muzaffargarh district were re-laid at the request of the Settlement Officer, Muzaffargarh. 1,154 plotted and 4.53 boundary masävis (settlement mapping sheets) on the scale of $1 / 2,640$, and 28 four-inch theets were traced and supplied in time to the Settlement Officer, Muzaffargarh. Besides these, 564 boundary masaris were partly compiled on the scale of one inch $=220$ feet for the next season's work; and 257 miscellaneous traces were prepared, all the traverse stations marked during the field season were plotted on 28 four-inch sheets. 1,668 pages of field books and 351 of set-up forming 8 volumes of field books and 5 volumes of set-up of the riverain work of the year were completed.

The minor traverse was based on the main circuits run in the previous seasons. The average daily out-turn per man was 6 stations and $1 \cdot 32$ linear miles. This low average is due partly to heavy line clearing along the rivers and partly to the inexperience of traversers newly entertained.

The average daily out-turn of laying out base-lines per man was 3 corners.
There was general scarcity of labour especially in the Indus riverain tract extending down to the confluence of the Indus and Panjnad rivers and much jungle clearing had to be done by khalāsis.

The following tables give full details of the riverain work completed during the year:-

Field woik.

Names of Riveits and Digtimets and Scales.	Mainchievit.				Ming 'Ahaveries For Detail suryet.					Masf-lines.			REmaict.
	鱼												
	28	78	335	1,420	10	21*	7	\cdots	*Re-embelded
	\cdots	\cdots		\cdots	46	221	1,220	5,490	43	0^{*}	2		- Do.
Paninal Rier. Districta Muzniforgarh nind hahiñwal pur Etate. Senlo $1 / 2,6 \mathrm{ith}$.	\cdots			*	36	110	TH	3,305	22	213	71	440	
Total	\ldots				110	419	2,289	10,28	84	240	80	246	

Office work done for the cadastral surveys of miverain estates.

Name of river.	Name of district.	Scale of masầri,	Nomber of plotted masaris show- ing traversed points.	Number of compiled masāivis how- ing riverain bonidaries.	Number of sheets traced for the nae of settlement offerees on scale 4 inchcs $=1$ mile.	Nomber of hich shent shict on which new wor was plotted.
Chenāb	Muzaffargarh	1/2,640	208	66	4	7
Panjuad	"	1/2,640	368	165	8	10
Indus	"	1/2,640	578	222	16	17
	Total		1,154	453	28	34

Besides these 257 miscellaneous traces were prepared and 564 boundary masā$v i s$ were partly compiled in advance for the next season's work.

Lahore Nazul land surrey.-The surver, on the scale of 1 inch $=40$ feet, undertaken towards the end of the previous recess at the request of the Deputy Commissioner, Lahore in connection with the Lahore city extension scheme was continued till the l0th November 1921. The area surveyed till the end of September $1!921$ was $33 \cdot 5$ acres and the area of the remaining portion mostly consisting of the aljoining congested part of the city surveyed subseguently was $16 \cdot 0$ acres, making the total out-turn of $49 \cdot 5$ acres. The cost-rate for the area surveyed in the year under report comes to Rs. $29 \cdot 4$ per acre and that for the whole area to Rs. $14 \cdot 5$ per acre.

Khrur special surrey.-This was undertaken, in continuation of the last year's work, for the Attock oil company at their request throngh the Deputy Comnissioner, Attock district. The work consisted in surveying on the eight-inch scale, with contours at 10 feet vertical intervals, the adjoining productive area to the south of the eastern extension and re-demarcating the boundaries of the castern and sonthern extensions dealt with last year. The topography was based on supplementary theodolite traversing. In all, li.5 theodolite stations were laid down and $19 \cdot 07$ linear miles were traversed and 6 iutersected points with heights were fixed for detail survey and boundary demarcation. The work was commenced in April and finished in July 192.. An area of $0 \cdot 15$ square mile was surveyed. The last year's survey of the central portion, area 4 square miles, was corrected at the reqnest of the company, to show new works that had been completed subsequently.

Cost-rates are as given below :-		
'Traversing per linear mile	...	Rs. $92 \cdot 7$
Original survey per square mile		, $366 \cdot 7$
Supplementary survey per square mile		172.5

177 ן lages of field books forming 2 volumes and 29 pages of set-up forming 1 volume were completed. 4 miscellaneous traces were prepared and all the traverse stations marked and intersected points were plotted on the three 8 -inch plot sheets of the last year's work.

Nature of the country.-The area dealt with by the farty was of varied character. The riverain area under water action was broken and full of swamps and partly under cultivation and partly rlense! y wooded. 'The Lahore " Nazul" land was a plain waste land covered with low grass and road avenues with the aljoining congested part of the city. The Khaur mining area was characterised by low bare rocky hills and open undulating ground partly cultivated and partly covered with serub jungle.

The average errors were as follows:-
(a) Base lines:-
() 6!) foot per corner of a riverain base-line as compared with its theoretical value.

		Angrlar crror per station in secomds.	Linenr error in links per 10 chains.
(b) Minor traverses			
Indus River	\ldots	6.30	0.67
Chenāb River	\ldots	7.55	0.59
Panjnad River	\ldots	7.28	0.66
Khaur mining area	\ldots	3.81	0.66

Hecess Dutirs-(a). The computing and plotting section consisting of, on the average, 17 draftsmen, etc., was under the supervision of Mr. Jamna Prasad, R.S., and subsequently under draftsman Makbul Husain. The section partly compiled 564 boundary masäris and completed preliminary work on 1,565 village masaivis in advance for the next season's work. Besides this it made miscellaneous traces and prepared rough field traverse charta for the use of the traversers in the next field season.
(b) The computing section consisting of on the average 12 computers, etc., was under the supervision of computer Badlu Ram. The section completed all traverse computations appertaining to the work of the year and its records detailed in the previous paragraphs. Besides this 5,804 pages of field buoks forming 19 volumes and $\mathbf{1 , 4 5 6}$ of set-up forming 14 volumes of the riverain traverse of the Kājanpur tahsīl (Dera Ghazzi Kān) executed in seasons 1915-19 were completed, leaving no work in arrears.
(c) The triangulation and traverse chart section consisting of on the average 10 computers and draftsmen was formed from the 21st July 1922 and put under the supervision of Mr. Jamna Prasad, R.S. The section compiled data of the old Lower Bāri Doàb work for incorporation in the manuscript charts for the derree sheets $43 /$ L and $44 /$ B.c.e.p.a undertaken last year. It is intended to complete them in the ensuing field scason.

The total expenditure of the party from the lst October 1921 to the 30th September 1922 was Rs. 1,07,121, as detailed below :-

(a)	Riverain survey \ldots	\ldots	\ldots	\ldots	Rs.	$1,02,661$
(b)	Lahore town traverse, additional debit	\ldots	\ldots	$"$	1,477	
(c)	Lahore "Nazul" land survey	\ldots	\ldots	\ldots	$"$	470
(d)	Khaur special sırvey	\ldots	\ldots	\ldots	$"$	2,513

Inspections.-The Superintendent, Northern Circle, inspected the party in the field on the 11th December and at its head-quarters at Lahore from the 19th to the 21 st December 1921.

No. 23 (PUNJAB RECTANGULATION) PARTY (Late SIND-SAGAK PARTY) (PUNJAB).

By Major R. Fostell, I. A.
The party was employed on rectangular demarcation in connection with the Punjab

Pensonnel.
Class I Officer.
Major R. Foater. J. A., in charge.

Class II Officers.

Mr. J. C. C. Leare, up to 15th September 1922. " C. O. Picard, from lst september 1922.
" D. N. Banerjee.

Upper Subordinate Service.

Mr. Laksbmi Dntt Joshi, from 191h July 1922. (1) Anrit Iam. 2 Supervisors.

Lower Subordinate Service.

17 Surveyors, etc.
76 Porely Temporary Traversers.

Government Sutlej Valley Canal and Colonisation Project consisting of :-
(a) Traversing for the location of the corners of 2,400 -acre reclangles in parts of sheets $39 \mathrm{O} / 2.3 .5 .6 .7 .10 .11 .13 .14,44 \mathrm{C} / 1.2,44 \mathrm{~F} / 8.11 .12 .15 .16$, and 44 G/1.2.5.6.
(b) Location of the corners of 2,400 -acre rectangles from the traversed points, base lines, and village trijunctions in parts of sheets $39 \mathrm{O} / 2.3 .5 .6 .7$. 10.11.13.14. 4.4 13/4.11.12.15.16, $4+\mathrm{C} / 1.5 .9 .13,4+\mathrm{F} / 2.3 .4-$ 7.8, and $4+\mathrm{G} / 1.2 .6 .6$.
(c) Subdemarcation of $2,40 @$-acre rectangles into $2 \overline{0}$-acre rectangles in the area falling in sheets $4+13 / 4.8$ and $4+\mathrm{C} / 1.5$ and into 100 -acre rectangles in the area falling in sheets $39 \mathrm{O} / 5.6 .7 .10 .13 .14$, $14 \mathrm{~B} / \mathrm{s} 11.12 .15 .16,44 \mathrm{C} / 1.5 .9 .13$ and $+1 \mathrm{~F} / 2.3 .4$.

The locale of operations was the tract between the old bed of the Beas and the Sutlej rivers in the Multan and Montgomery districts of the Punjab. Except for a cultivated strip along the latter, the country is a flat plain covered with scrub jungle, thick only in those parts which are reserved as Government " Rakhs". 'The Bahāwalpur and Minchinābād tahsils of Bahawalpur State are well cultivated in the north, and consist of a dry plain covered with serub in the south.

The head-quarters of the party closed at Mussoorie on 10th October 1921, and opened in the field at Multān Cantonment on 201 h October 1921; the party closed its field season on 8th May 192., and re-opened in Mussoorie on 17th May 19:2. At the commencement of the field season the party was divided into 4 camps; from lst December 1921 into 5 camps, and from 2lst February 192: into 6 camps.

The health of the party was fair. The number of thalasis was large, and, partly through the failure of the blanket contractor, partly through the ignorance of the khalasis in not reporting sick, a large number fell ill with pneumonia, and, during the season 8 k halāsis died, chiefly from this cause. One khalãsi died from the effect of a wound accidentally inflicted by a traverser with a shotgun.

Traversing.-The nature of the country traversed varied from waterless tracts covered with serub jungle to fairly thickly cultivated plains.

Traversing to fix corners of 2,400-acre rectangles was carried out by No. 4 Camp, consisting of 8 traversers under Mr. Amrit Ram. Lines were run for the purpose of laying down temporary marks near the 2,400 -acre corners, and connected, in the area falling in the Multin district, to previous triangulation carried out by this party and riverain base lines laid down by No. 2.2 Party and in Baláwalpur State to the Sutlej Meridional Series. 1,643.2 linear miles were traversed, 3,112 stations observed at and 4.3 azimuths were observed. The cost-rate amounted to Rs. $2(6 \cdot 9$ per linear mile.

Rectongulation.-The nature of the country rectangulated is the same as in the area mentioned above.

The work consisted of (1) location on the ground of main corners of 2,400-acre rectangles by means of traverse baseilines and village trijunctions, previously laid down, and the temporary stations fixed by traverse (2) location on the ground of 25 -acre and 100 -acre corners on the long sides of 2,400 -acre rectangles by means of theodolite, short and long chains (3) sublemarcation of 2, 400 -acre rectangles into 25 -acre and 100 -acre rectangles. All corners were marked ly Hat topped stone pillars, 6 inches square and 30 inches long, embedded up to $\because l$ inches in the gronnd.

In the previous year the party carried out subdemarcation to 95 -acre rectangles, but this year it was decided, to enable this party to complete the whole area of the project in 3 field seasons, that subdemarcation to 100 -acre rectangles only should be carried out. This was done except for an area of $157 \cdot 1$ square miles in which the 25 -acre corners on the long side of 2.400 -acre rectangles had been laid out the previous year, which was subdemarcated to 25 -acre rectangles.

50 per cent of the work was tested by 5,137. 7 linear miles partalled.
No. 4 Camp. under Mr. Amrit Ram, besides carrying out traversing, located 443 main corners of $2.400-\mathrm{acre}$ rectangles.

No. 1 Camp, under Mr. J. C. C. Lears, with 10 traversers laid out 203 main corners of 2,400 -acre rectangles and 1,619100 -acre corners on the long side of 2,400 -acre rectangles.

No. 2 Camp, under Mr. Gurditta Ram, Assistant Engineer, P. W. D., attached, with from $2: 2$ to 32 traversers laid out $1,128 \quad 25$-acre corners and 2,835100 -acre corners on the interior sides and No. 3 Camp under Mr. Girdhari Lal Bhola, Assistant Engrineer, P. W. D., attached, with from 1!) to 30 traversers laid out $1,305 \quad 25$-acre corners and 2,632 100 -acre corners on the interior side.

No 5 (amp was formed of 13 to 17 traversers under Mr. D. N. Banerjee on lst December 19:? , after that officer had completed the training of the new traversers and the two Assistant Engineers. It carried out demarcation of long sides of 2,400 -acre rectangles and laid out 2,732 100-acre corners.

No. 6 Camp was formed of 7 traversers under Mr. M. H. Punwani, Supervisor, on 21 st February 1922, after that officer had completed his training, and carried out demarcation of long siles of 2,400 -acre rectangles, laying out 549100 acre corners.

The out-turn of the party for the season is as follows :-
616 main corners of 2,400 -acre rectangles, 10,367 100-acre corners and 2,4;3325-acre corners located 9,159100 -acre rectangles, and $4,0202 \pi$-acre rectangles laid out, comprising a total of $1,558 \cdot 2$ square miles.

The cost-rate of rectangulation is Rs. 181-2 per square?mile or Re. $0 \cdot 28$ per acre.
Reres. Duties.-The strength of the party was considerably reduced in recess, all the purely temporary staff being sent on leave.

No. 1 Section, under Mr. J. C. C. Lears, assisted by Mr. Indar Singh Supervisor, and 5 surveyors etc., and No. 2 Section, under Mr. D. N. Banerjee, assisted by Mr. M. H. Punwani Supervisor, and 5 traversers, took up the compilation of masāvis and drawing of index maps.

No. 3 Section, under Mr. Amrit Ram, with 5 computers, completed the computation of the current?season's traverse, and plotted the traverse stations on to masauis in preparation for the next season.

Inspections.-The Superintendent, Northern Circle, inspected the party in the field from 12 th to 18 th| December 1921 and frequently in recess. The Surveyor General of India accompanied by the Superintendent, Northern Circle, inspected the party in recess in April 1922.

THE BHOPAL TRAVERSE DETACHMENT.

By Maya Das Puri, Rai Sahib.

The detachment was formed on the 18th October 1921 to traverse village boundarics for the cadastral survey of the Bhopal State, on the

Personnel.
Class 11 Offer.
Mr. Maya Das Puri, IR. S., in charge.
Upper Subordinate Service.
Mr. Nabidad Kban, from the lst November 1921.

Lower Suhovdinate Service.
5 Traversers, Computers, cte, and 11 purels temporary traversers ctc.
sixteen-inch scale. As the Government of India's sanction for the formation of the detachment was not received till late in the season, the first two months were spent in making preliminary arrangements.

The office at M[ussoorie was closed on the 11th November $1 \geqslant 21$ and opened on the 2lst November 1921 at Bhopal where it remained till the close of the season. The field operations were closed on the 31st May 19:2.

During the field the traversers employed on main circuits, as well as the computing section were supervised by the Officer in charge; and the new traversers under training divided into two camps under Mr. Nabidad Khan, Sub-Assistant Superintendent, and Harkishan Das, traverser. In recess the computing section was directly under the Oflicer in charge, while the plotting section was supervised by Mr. Nabidad Khan.

The Bhopal Durbier desired that local men should be employed oii the work, as far as possible, and intimated that fhalasis could be obtained at cheap rates. F'or this reason only a few trained lower suloordinates were transferred to the detachment, while all the other hands were to be locally entertained and trained. Khalasis however proved to be unobtainable locally, and eventually had to be imported from outside the State, on account of which there was a delay of nearly a month.

On the 30 th November 1921 at the reguest of the Revenue Minister, Bhopal, the proposed locale of operations was changed and the Durāhā tahsil of the northern district was decided on as the area in which work should be commenced. Owing to this change in programme, the orders regarding the demarcation of village boundaries and to afford assistance to the detachment were late in arriving and considerable trouble was, at first, experienced in obtaining local labour and conveyance and in tracing out village boundaries on the ground.

Where the boundaries were not traceable, points were thrown about 25 chains apart on both sides of the aligument pointed out by villagers. In large villages, sub-circuits were run in the interior about half a mile apart to aid in the detail survey, and for the same reason two or three dressed stones were embedded along the boundaries of each village to serve as permanent marks.

In all, 936 linear miles of main and sub-circuits were executed, and 3,987 theodolite stations laid ont in 327 square miles along the boundaries and interior of 160 villages; and 235 dressed stones embedlled on the theodolite stations.
35.) sheets (size of a sheet being 20 inches $\times 28$ inches) were plotted on the sixteen-inch scale, 24 four-inch sheets were traced, and the areas of 169 polygons were computed by universal theorem and planimeter. These were supplied to the State authorities during the year. Besides this, scveral miscellancous traces were prepared, and all the work done during the year, was plotted on the four-inch scale.

The work was entirely based on Great Trigonometrical values. Main circuits were rum betwen G.T. stations over favourable ground with a 330 -foot crinoline tape and a 6 -inch theololite; and were conneeted with Manüabhar H.S., Tuna H.S., Singpur H.S., Mahādeo H.S., Rāntek H.S., Kushamdi H.S., Barli H.S., Pānbiā H.S. and Talāi Tonk H.S. In sub-circuits along village bomudaries generally, 5 " theodolites and two chains 66 and 100 feet long were used.

The nature of ground under survey was undulating, hilly, interspersed with rocky knolls, partly covered with dense jungle and partly well cultivated.

As no medical aid was available in the area under survey, there being no dispensary in the tahsil, all patients had to be brought to Bhopal for treatment. Several men fell sick specially at the end of the field season due to heat and malaria but all recovered.

The average errors of the work are :-

The total expenditure of the detachment including contribution towards pension from the 18th October 1921 to the 30th September 1922 was Rs. 59,046 .

Inspections.-The detachment was inspected by the Superintendent, Northern Circle, on the 27th and 28th July 1922.

SOUTHERN CIRCLE.

(Vide Index Map No. 1).
summary.-This circle was under the superintendence of Colonel H. H. Turner, R. E., $\mathbf{u p}^{\prime}$ to 17 th April 1922, and again from 30th May 1922 to 9 th August 1922, under Lient.Colonel C.P. Gunter, O.B.E., R.E., from 18th April 1922 to 29 th May 1922 and again from 10th August 1922. It comprised Nos. 5, 6, 7 and 8 Parties, No. 4 Drawing Office, Hecord Section and the Training Section.

During the year Nos. 5, 6, 7 and 8 Parties completed $2 l, 961$ square miles of detail survey and 9,869 square miles of triangulation. During recess the fair-mipping of the area surveyed was taken up and will be completed before the parties proceed to the field.

The detail survey consisted of :-

No. 20 Party (Cantomment) on completion of its programme in the Southern Command was placed under the administrative control of the Suparintendent, Northern Circle from the lst April 1922.

The Mysore - South Kanara Boundary demareation was continued but not completed.
The Training Section, composed of Upper Subordinate probationers and pupil surveyors, worked throughout the year.

A survey course for Artillery officers was completed in September.
The following work was completed by the Photo-Zinco Section of No. 4 Drawing Office :-

Reproductions	\ldots	\ldots	212
Enlargements	\ldots	\ldots	195
Reductions	\ldots	\ldots	221
Vandyke plates prepared	\ldots	183	
Prints pulled	\ldots	\ldots	7,057

The Record Section submitted for publication 6 triangulation pamphlets and completed data for 8 triangulation pamphlets for record in the circle office.

Nos. 5, 6, 7 and 8 Parties and the Training Section were inspected once in the field and on several occasions during recess by the Superintendent, Southern Circle.

No. 5 PARTY (CENTRAL INDIA, CENTRAL PROVINCES AND GWALIOR). By Major F. B. Scott, I. A.
This party completed the detail survey on the $\frac{t}{2}$-inch scale of sheets $46 \mathrm{~N} / \mathrm{Ne}$ and

phasonnel.

Class I Offirers.
Major F . B. Scoll, I. A. in charge from th Febrnary $19 \underline{20}$.
Captain (7. Iemmox, I. A., in charge to Brd lebmacy 1922.

Class II ODliecrs.
Mr. J. II. S. Wikon from 1st Felormary lage.
, F. C. Pilcher.
, F. W. Smith to lith Fehmary love
". J. A. Calvert to IIth Jamuary 1922.
,. Mahammad Niammudelin, B. A. (on probation)
Upper Suhordincle Sormice.

Mr. l', K. Vengunvami to lith Septeuber 1!22*.
" D. LR, Vohra from lat. January 19as.
" J. A. Cabral.
" M. R. Sharma (on probation).
Lower Snbordinate Service.
37 Survoyors, ate.
$46 \mathrm{~N} / \mathrm{se}$. less $46 \mathrm{~N} / 16$ and isolated portions of Indore State forests, on the 1 -inch scale of sheets $55 \mathrm{l} / 3 / \mathrm{x} .8 .11 .12 .15 .16$ and $55 \mathrm{~F} / 3.1 .8$ and isolated portions of Indore State forests in sheets $46 \mathrm{~N} /$ NE.sE. and on the 4 -inch scale of small blocks of reserved forests in sheets $55 \mathrm{~B} / 15$, $55 \mathrm{~F} / 1.7 .8 .11$ and $55 \mathrm{~J} / 2$.

The country consists of well cultivated wooded plains and intricate jungle-clad hills.

The field season opened on the 2 oth October 1921 and ciosed on the lst April 1922. The field head-quarters was at Khandiva.

The health of the party was not very good, a number of surveyors suffering from fever.

Plane-tabling.-The area surveyed on the $\frac{1}{2}$-inch scale comprises the Mālwa plateau, open
cultivated country, in the north, the Vindhya Range, consisting of intricate jungle-clad hills, in the centre, and the Narbada valley, well cultivated and wooded, in the south.

The area surveyed on the l-inch scale consists of the valley of the Narbada river, densely wooded and broken ground, and cultivated and wooded plains to the south of the river.

The work was divided into three camps as under :-
No. I Camp.-Under Mr. F. C. Pilcher, with one Upper Subordinate officer and eleven surveyors carried out original survey on the $\frac{1}{2}$-inch scale of sheets $46 \mathrm{~N} / \mathrm{NE}$. and $46 \mathrm{~N} / \mathrm{sc}$. less sheet $46 \mathrm{~N} / 16$ and original survey on the 1 -inch scale of 278 square miles of Indore State forests in these sheets.

No. II Camp.-Under Mr. F. W. Smith till the llth February 1922 and then under Mr. J. H. S. Wilson, with twelve surveyors cartied out original and supplementary survey on the 1 -inch scale of sheets $55 \mathrm{~B} / 15.16$ and $55 \cdot \mathrm{~F} / 3.4 .8$, and original survey on the 4 -inch scale of small blocks of reserved forest in sheets $55 \mathrm{~B} / 15,55 \mathrm{~F} / 4.7 .8 .11$ and $55 \mathrm{~J} / 2$.

No. III Camm.—Under Mr. P. S. Vengusvami till the 22nd February 192\% and then under Mr. Najamuddin, with one Upper Subordinate officer and eleven surveyors carried out original and supplementary survey on the l-inch scale of sheets $55 \mathrm{~B} / 3.7 .8 .11 .12$.

The original survey calls for no special note. The l-inch supplementary survey was carried out by transferring photographic reductions of 4 -inch forest surveys to the plane-table sections and checking the detail on the ground.

Trian!ulation.-Subsidiary triangulation was carried out by surveyor Nur Muhammad in sheets $46 \mathrm{~N} / \mathrm{Nw} . \mathrm{siv}$., $55 \mathrm{~B} / \mathrm{Nw}$. and $55 \mathrm{~B} / \mathrm{Ne}$. less $55 \mathrm{~B} / 13$, and by Mr . Vengusvami in sheets $55 \mathrm{~B} / 13,55 \mathrm{~F} / \mathrm{NW}$. and $55 \mathrm{~F} / \mathrm{NE}$. (north half; for survey on the $\frac{1}{2}$-inch scale except for isolated portions of Indore State forest on the l-inch scale. The country triangulated consists of open undulating cultivated plains in the north, intricate jungle-clad hills of the Vindhya Range in the centre and the valley of the Narbada river in the south.

Recess Duties.-(a) The fair-mapping and typing was divided into three sections as under:-

No. I Section.-Under Mr. J. H.S. Wilson drew l-inch sheets 55 B/8.12.15.16 and $55 \mathrm{~F} / \mathbf{3 . 4 . \mathrm { A }}$.

No. II Section.-Under Mr. F.C. Pilcher drew $\frac{1}{2}$-inch sheets $4.6 \mathrm{~N} / \mathrm{Ne} . \mathrm{Se}$. and 1 -inch sheets $55 \mathrm{~B} / 3.7$ and $290 \cdot 11$ square miles of Indore State forests on the 1 -inch scale.

Typing and Training Section.-Captain G. Lennox was in charge of the typing of the party and the training of young surveyors.

There will be no arrears of fair-mapping by the end of recess.
The fair-mapping of sheet $55 \mathrm{~B} / 11$ was not undertaken as large errors were found and a part of the area will have to be re-surveyed.
(b) All computations have been completed, with the exception of the synopsis of sheet 55 N .

The party was inspected both in the field and recess by the Superintendent, Southern Circle.

No. 6 PARTY (HYDERĀBĀD).

By Captan J. K. Douglas, R. E.
This party completed the detail survey on the $\frac{1}{2}$-inch scale of sheets $56 \mathrm{D} / \mathrm{N} \mathrm{E}$, , $56 \mathrm{H} / \mathrm{NW}$. sw. ne. SE. and $56 \mathrm{~L} / \mathrm{NW}$. This area

Pergonnel.
Class 1 Officers.
Lient.-Colonel C. P. Gunter, O. B. E., R. E., in charge from 3rd October 1921 to 17th April 1922 and from 30ıb Mny to 9th Anguat 1922.
Caplaln J. K. llogglas, R.E. (on probation), from 17th Octoler 1921 to 19th March 1922 and from lst May 1922; in charge from 1et May to 29th May 1922 and from 10th Anguat 1822.
included 365 square miles of reserved forests previously surveyed on the 2 -inch scale. $\frac{1}{2}$-inch reductions were used and found correct.

The field season opened on the 28 th October 1921 and closed on the 4th April 1922. The field head-quarters were at Secunderābād.

The health of the party was good on the whole, 2 menials died of cholera.

Class II Officers.

Mr. H. B. Simons to 17 th October 1921 ; in charge from 1st t, 2nd October 1921.
, E.A. Meyer, from loth Junuary 1922 and in charge from 18th April to 30 th A pril 1922.
, J.C. St. C. Pollett, From 17th October 1921.
, J. N. Nateran, B.A.
$U_{P} p e r$ Subordinate Service.
Mr. K.G. Mnadinna.
., D.R. Vohra, from 14th October to 30th December 1921.
" T. S. Nimpyann, B.A. (on probation), from 22nd May 1922.

Lomer Suhordinate Service.
26 Survejors, etc.

Plane-labling.-Most of the country is open, undulating and cultivated with portions of hilly and somewhat intricate ground covered with low scrub and stones. The reserved forest areas consist of hills more or less densely wooded.

The work was divided as follows :-
No. 1 Camp, first under Captain Douglas, R.E., with one Upper Subordinate officer for a short period and then under Mr. E.A. Meyer with 5 surveyors and Captain Douglas who was under instruction in plane-tabling completed the $\frac{1}{2}$-inch original survey of sheets $56 \mathrm{D} / \mathrm{NE}$. and $56 \mathrm{H} / \mathrm{Nw}$.

No. 2 C κm, under Mr. J. C. St. C. Yollett with 9 surveyors completed the $\frac{1}{2}$-inch original survey of sheets $56 \mathrm{H} / \mathrm{se}$. sw.

No. 3 Camp, under Mr. E.N. Natesan, B. A., with 8 surveyors completed the $\frac{1}{2}$-inch original survey of sheets $50 \mathrm{H} / \mathrm{yE}$. and $50 \mathrm{~L} / \mathrm{xw}$.

The total area surveyed was 6,635 square miles which inclucles 365 square miles of supplementary survey in which $\frac{d}{}$-inch reductions from 2 -inch forest maps previously executed were used. The reductions were tested by various in silu fixings and found correct.

The whole of the area surveyed is in Hyderabad State.
Triangulation.-Tle work consisted solely of supplementary triangulation in the Amräbād, Devarkouda and Mirialguda Forest areas, in the Mahbübnagar and Nalgonda distriets.

The comentry consists mainly of thickly wooled hills. Mr. Mandanna completed 690 square miles of supplementary triangulation. 'The whole of the area concerned is in Hyderibïd State.

Traversing.-No traversing was carried ont.
Recess Duties.-The fair-mapping was divided as follows:-
No. 1 Section, under Mr. Mever, $\frac{1}{2}$-inch sheets $56 \mathrm{D} / \mathrm{x}$ r, and $56 \mathrm{H} / \mathrm{x} w$.
No. 2 Section, under Mr. Pollett, $\frac{1}{2}$-inch sheets $56 \mathrm{H} / \mathrm{sw}$. and $56 \mathrm{H} /$ se.
No. 3 Section, undel Mr. Natesan, $\frac{1}{2}$-inch shects $56 \mathrm{H} / \mathrm{N}$ ti. and $5(\mathrm{f} / \mathrm{L} / \mathrm{N}$., and 1 -inch sheets $\mathbf{5} 7$ ($\mathbf{i} / 10.14$ surveyed by the Training Section.

All the above shects have been submitted for publication.
The computations of the supplementary triangulation were completed during recess. The arrears of computations consist of sheets $560 / 1.2 .5,6.0 .10$, which will be taken up as soon as sheets $56 \mathrm{O} / 13.14$ have been triangulated.

Triangulation charts of 56 D$)$ and H have been taken in hand.
No. 7 PARTY (MADRAS).
By Masor J. D. Campreai, D. S. O., R. E.
This party completed the detail survey on the 1 -inch and $\underset{\sim}{0}$-inch scales of sheets

f'ebsonnel.

Class I Officers.
Major J. D. Gamphell, I.S.O., R.E., in charge.
Coptnin (i. W. (Gemmell, I.A. (on probation), from 15 th January 1922.
Lientenant (G. Bomford, R. E. (on probation), from 15th Jamuary to ond dugust 1922.

Clase II Officers.
Mr. F. H. Orant.
" A. F. Murphy.
" N.S. Harilarn Iyer.
, T. O. Threlfall (on probation).
Upper Sulordinate Service.
Mr. K. Narayamasvami Chetti.
., Khib Ial, R.S.
, Shadi Lal Dube.
" K. B. Mnthanna fon probation).
Lower Subordinate Service.
as Burvejors, etc.
$57 \mathrm{I} / 1.2 .315 .5 .6 .8 .9 .10 .11 .12 .13 .14 .15 .16$ and $57 \mathrm{~J} / 1.5$, and of the areas falling in the Martras Presidency in sheets $56 \mathrm{~L} / \mathrm{s.12.16}$ and $56 \mathrm{P} / 4.8 .14$ not previously surveyed on the 2 -inch scale, also certain rescrved forests falling partly or wholly in sheets $57 \mathrm{E} / 14.15$ and $57 \mathrm{~J} / 2.6$ on the 2 -inch scale.

The nature of the country generally comprised cultivated open expanses of level or undulating land, rocky serub covered hills and the forest clad ranges of the Nallamalais and Erramalas.

The office of the party opened at Kurnool, the field head-quarters, on the 1st November 1421. The office was closed at Kurnool on the f th April 1922 and opened at Nandyàl on the 6th April $19 \div 2$ and finally closed at Nandyal on the 17th April $10 \div 2$ and reopened at Bangalore on the 24th April 1922. There was practically no rain during the field season.

The health of the party was fair only, the forest tracts of the Nallamalais and Erramalas being notoriously feverish.

There was an average absence of about two surveyors from this cause-during the field season.

Plane-tabling.-The country surveyed is partly flat or slightly undulating, open and cultivated, the cultivation being mainly dry. The minor \|hills are rocky and bare with a little scrub. The reserved forests in the higher ranges are covered with bamboo and other jungle of varying density.

The survey presented no difficulties, chaining having seldom to be resorted to. Work was done on blue prints on mounted straw boards of both Madras Revenue work and 4 -inch Forest surveys. In the case of the latter, l-inch reductions were printed in blue and detail required on that scale inked up. Contours were accepted to a greater extent than hitherto and were inked up on the blue print reductions. Information was obtained from the Forest Department as to where new work was to be expected and the 4 -inch maps were accepted except (a) where additions or alterations were ascertained to have been made since the 4 -inch survey (b) where contouring was known to be cloubtful owing to its not agreeing with the heights, on the 4 -inch maps (c) Heights destined to appear on the fair sheets were checked and revised.

The work was divided into five camps as follows:-
No. 1 Camp.-Under Mr. F.H. Grant, head-quarters Atmakūr, with 6 surveyors, completed sheets $56 \mathrm{~L} / 8.12 .16,56 \mathrm{P} / 4.8 .14$ and $57 \mathrm{I} / 9.13$. The work in this camp was mainly supplementary, (* to Madras-Hyderäbād boundary only).

No. 2 Camp.—Under Mr. A.F. Murphy, head-quarters Nandyāl, with 8 surveyors, completed 1 -inch survey in sheets $57 \mathrm{I} / 2.3 .1 .67 .8$ and some 2 -inch work in $57 \mathrm{I} / 3.4$.

No. 3 Camp.-Under Mr. K. Narayanasvami Chetti, head-quarters Giddalūr with 7 surveyors, completed sheets $57 \mathrm{I} / \mathbf{1 0 . 1 1 . 1 2 . 1 4 . 1 5 . 1 6}$ and some 2 -inch work in $57 \mathrm{I} / 12.15 .16$. The work of this camp was mainly supplementary.

No. 4 Camp.—Under R. S. Shib Lal, head-quarters, Kurnool, with one surveyor and 6 pupils, completed sheets $57 \mathrm{I} / 1.5,57 \mathrm{~J} / 1.5$ and some 2 -inch work in $57 \mathrm{~J} /$ 2.f. This camp was strengthened towards the close of the field season when surveyors were available from other camps.

No. 5 Camn.-Under Mr. T. O. Threlfall, head-quarters Betameherla with 7 surveyors completed 2 -inch survey in sheets $57 \mathrm{I} / 2.3 .6 .7$ with some areas falling in $57 \mathrm{E} / 14.15$.

Two Class I officers, Captain Gemmell, I. A., and Lieutenant Bomford. R. E. joined the party in January 1922 and carried out plane-tabling in Camp IV area during the remainder of the field season.

Trianyulation.-There were three triangulators as follows :-
Mr. N. S. Harihara Iyer who triangulated $1,8: 77$ square miles in sleeets $57 \mathrm{~J} / 11.12 .15 .16$, and $57 \mathrm{~K} / \mathrm{g} .13 \mathrm{l}+1 \mathrm{n} .16 . \mathrm{Mr}$. Shadi Lal Dube $2,018 \mathrm{~s}$ guare miles in sheets $57 \mathrm{~J} /$ 3.4.7.9 and $57 \mathrm{~K} /$ 1.25 .6 and surveyor Iltifat Husain who commenced in January 192:. and triangulated 617 square miles in $57 \mathrm{~K} / 7.1011 .12$. The country triangulate 1 is much like that surveyed except that rocky scrub covered hills are much more numerous and extensive.

Recres Duties.-(a) The fair-mapping was divided into foul sections as follows :-
Do. 1 Section.-Under Mr. Grant, and afterwards Mr. Claudius, shects $56 \mathrm{~L} / 8.12 .16$, $56 \mathrm{P} / 4 \mathrm{s.1.t}$ and $57 \mathrm{I} / 9.13$.

So. 3 Section.-Under Mr. Narayanasvami Chetti, sheets 57 I/11.19.14.15.16.
Wo. 1 Sertion.—Under Mr. Slibb Lal, R. S., sheets 57 I/1.2.5 and 57 J/1.5.
(b) Computations have been brought practically up to date by a section of varying strength under Lieat. Bomford, K. E., and afterwards Captain Gemmell, I. A.
(r) Preparations for the field.-These have differed slightly from previous years in that instead of, as hitherto, obtaining blue print relluctions of 4 -inch forest work and inking up the necessary detail preparatory to re-photography, black prints have been obtained after thickening up the 250 contours on the original 4 -inch maps. Where this could not be done owing, as is freprently the case, to the contours not agreeing with the heights, the 250 contour has been left unemphasized and the areas will he recontoured on the ground. The black print reluctions have been mounted, together with prints of the old Mysore l-inch maps, on the Madras Revenue Survey sheets and the whole photographed to obtain blue prints for plane-tables. This system is satisfactory and has saved immense labour in inking up blue reductions.

No. 8 PARTY (BOMBAY AND MADRAS).

By Lieut.-Colonel M. O'C. Tandy, D.S.O., O B.E., R.E.

The party completed the survey of 4,555 square miles on the 1 -inch scale in sheets $58 \mathrm{~F} / 11.12 .15 .16,47 \mathrm{~F} / 9.10 .11 .12 .13 .14 .16 .16,47 \mathrm{~J} / 3.4 .7 .8$.

Prhgonnel.

Class I Officers.
Lieut. Colonel M. O'C. 'l'andy, D. B.O., O. B. E., R. E., in charge, except while on leave from 23rd March to 30th April 1922.
Captuin J. K. Douglas. R. E. (on probation), in charge from 23rd March to $30 t h$ A pill 1922.

Class II Officers.
Mr. M. Mabadeva Madaliar, M. A.
" B.T. Wyatt,
" M. S. Ganesa Aijar.
Opper Subordinate Service.
Mr. IT. Narasimhamurti Rao.
, Shaikh Mnhammad Salik.
" Abdal Ghafor.
"Janain Raj Chibbar (on probation).
Lower Subordinate Service.
42 Surveyors, etc.

The field season opened with head-quarters at Kirkee on 22 nd November 1921 and closed there on 10 th April 1922, but Camp No. 1 in Madras did not complete field work until 27th April. With the exception of one surveyor in the Madras area who had to be sent on medical leave early in the season on account of malaria the health of the party was excellent.

The area surveyed in Madras consisted of almost equal proportions of highly cultivated plains and of forest-clad hills rising to about 7,000 feet.

The country surveyed in the Bombay Presidency included portions of the Western Ghäts rising to about 4,000 feet and the bold spurs stretching eastwards from the Ghäts to the more open and cultivated areas to the east.

In the Madras area original survey was carried out on blue prints of the Madras Revenue Surveys and supplementary survey on blue prints of one-inch reductions of the old 4-inch forest maps of the Survey of India. In the Bombay area revision survey was carried out on blue prints of the departmental maps surveyed about 40 years ago.

Field work was divided in 4 camps.
No. 1 Camp.-Under Mr. M. Mahadeva Mudaliar, assisted by Mr. Abdul Ghafur with 11 surveyors completed 970 square miles of original survey and 199 square miles of supplementary survey in sheets $58 \mathrm{~F} / \mathrm{L1}, 12.16 .16$, the supplementary triangulation in $58 \mathrm{~F} / 15$ being done by Mr. Abdul (thafur.

No. 2 Camp.—Under Mr. B. T. Wyatt with Mr. Janam Raj Chibbar and at first 10 and later on 7 surveyors completed 1,126 square miles of revision survey in sheets 47 F/9.10.13.14. this area including Poona City and Cantonment and Kirkee.

No. 3 Camp.-Under Mr. M.S. Ganesa Aiyar, assisted by Mr. H. Narasimhamurti Rao with at first 13 and later on 12 surveyors completed 1,412 square miles of revision survey in sheets $47 \mathrm{~F} / 15$ and $47 \mathrm{~J} / 3.4 .7 . \mathrm{s}$.

No. 4 Camp. - Under Mr. Shaikh Muhammad Salik took the field with 5 surveyors and was subsequently strengthened by the transfer of 3 surveyors from camps Nos. 2 and 3: this camp completed the revision survey of 847 syuare miles in sheets $47 \mathrm{~F} / 11$.12. 16 .

Supplementary triangulation to provide a few extra heights in $48 \mathrm{~F} / 15$ was carried out during the first month of the field season.

Recess Duties.-The fair-mapping was divided into 3 sections:-
No. 1 Scction.-Uuder Mr. M. Mahadeva Mudaliar (on leave from lst June 192: to 31st August 1922) and assisted by Mr. Abdul Ghafur, sheets 53 F/11.12.15. 16.

No. 2 Section..--Under Mr. B. T. Wyatt assisted by Mr. Shaikh Muhammad Salik (on leave from 2nd August 1922 to 30th September 1922), sheets 47 F/9.10.11.12.13.14.

No. 3 Section.—Under Mr. M. S. Ganesa Aiyar assisted for the first month of recess by Mr. I. Narasimhamurti Rao, sheets $47 \mathrm{~F} / 1 \mathrm{o} .16$ and $47 \mathrm{~J} /$ 3.4.7.8. Mr. Narasimhamurti Rao was employed during the last 4 months of recess in charge of a section revising the heights and projecting and plotting plane-tables for the coming season's work.

All fair drawing will be completed before the party takes the field but the final examination of some of the sheets will have to be completed at field head-quarters.

By S.S. McA'F. Fielding.

Of the 20 pupil surveyors, 3 had been recruited the previous season but had been retained in No. 4 Drawing Office, the remaining 17 had been recruited between January and March 1921, and had received some training in drawing in No. 4 Drawing Office.

They were transferred to the Section in May and received preliminary training in drawing and plane-tabling in Bangalore throughout the recess season in 1921.

Five Upper Subordinate probationers recruited in January 1921, had completed one course but were not considered efficient plane-tablers at the end of their field season in May, and were retained for further training in plane-tabling.

A new class of 9 Upper Subordinate probationers was entertained in October 1921. One probationer resigned almost immediately before taking the field, and one more joined early in November.

The section took the field on the 2nd November and proceeded to the field head-quarters at Srinnivâspur in the Kolir district. The new class of Upper Subordinate probationers remained in Bangalore till the loth November with Mr. Morton 20 Popil Surveyors. and one lst class surveyor, to receive some preliminary training and to allow them time for preparation.

The area selected for survey was sheet $57 \mathrm{~K} / 3$ for pupil surveyors and Upper Subordinate probationers 2nd year, and $57 \mathrm{~K} / 4$ for the new class of Upper Subordinates, with head-quarters at Kolar town.

Sheet $57 \mathrm{~K} /$ /a was a suitable sheet for instruction on the whole though it was found that the eastern portion was too low lying and heavily wooded, with trigonometrical points scarce. 'The western portion is fairly open, undulating and contains groups of hills suitable for instruction in sketching and contouring.

Communications (main roads and a light railway running through the sheet) were excellent and every assistance was given when required by the local authorities. The whole of sheet $57 \mathrm{~K} / 3$ was completed.

Six pupil surveyors were discharged or allowed to resign as they were found unsuitable.
In aldition to $57 \mathrm{~K} / 3$. the portions left unsurveyed in the previous season in $\mathrm{K} / 4$ were completed by two Upper Subordinates (2nd year) on the one-inch scale.

The average out-turn for the season was as follows:-
Upper Subordinate probationers 2nd year ($1 \frac{1}{2}$-inch) 32 square miles.

$"$,	$"$	$"$	$(l-i n c h)$	32
Pupil surveyors $1 \frac{1}{2}$-inch "...	\ldots	\ldots	24	$"$

The camp of the lst year class of Upper Subordinate probationers remained at Kolar in $57 \mathrm{~K} / \mathrm{t}$ throughout the season. They were given preliminary instruction in plane-tabling, the use of a theodolite (reading rounds of angles temporary and permanent adjustments etc.) and were then put through a course of triangulation. The area triangulated was approximately : $\% 7$ square miles with 5 stations based on a G. T. base. Four men (working in pairs) triangulated at one time, the remainder being employed on plane-tabling. On completion of the triangulation all were put on to plane-tabling over an area of about 30 square miles consisting of plains and hills in the neighbourhood of head-quarters. During the season 4 probationers were allowed to resign their appointments, being considered unsuitable.

In February Mr. Morton was transferred from the section, and the head-quarters of the section was transferred from Srīnivāөpur to Kolär.

The field season closed at the end of April and the section returned to recess quarters in Bangalore. The health of all members throughout the season had been fairly good. One menial died from natural causes. There was a good deal of fever of a mild type among the menials in the months of March and April but all were successfully freated in the local hospital. A case of small-pox in a pupils scuad, in April delayed the return to recess quarters of some pupils for about 10 days.

Immediately on return to recess quarters, the five ['pper Subordinates of the 2nd year, were transferred to various circles.

I'wo more pupil surveyors were discharged, which reduced the strength of the section to
5 Upper Subordinates,
12 Pupil Surveyors.
The Upper Subordinates continued and completed their instruction in theodolite traversing, (with subtense work) levelling, drawing and computations. They also completed the survey of a portion of the military grass farm area on the scale of 16 inches $=1$ mile and fixed ranges for artillery purposes by means of triangulation and traverse. Five pupils were attached to No. 4. Drawing Office for instruction in drawing owing to want of accommodation with the section. The remaining 7 practised fair-drawing with the mathematical and swivel pens.

All the Upper Subordinate probationers and pupil survevors were drafted to various circles and parties on completion of their course in October 1922.

The Training Section will be closed down at the end of this season as no new probationers or pupils have been recruited.

EASTERN CIRCLE.

(Vide Index Map No. 1).
Summary.-This circle was under the superintendence of Colonel W. M. Coldstream thronghout the survey year. It comprised Nos. $9,10,11$ and 12 Topographical Parties, No. 21 Forest Party and No. 5 Drawing Office, exclusive of survey units of Local Governments under the administrative charge of the Superintendent.

During the year the 5 field parties completed 11,480 square miles of detail survey on the half-inch, one-inch, two-inch and four-inch scales, the triangulation of 5,076 square miles and the traversing of 2,077 square miles. The maps of the areas surveyed have been drawn in 55 sheets.

The detail survey consisted of :-
4,051 square miles of half-inch original survey
3,624 " ", one-inch original survey
3,267 " ", , one-inch supplementary survey
518 ", ,"two-inch original survey
20 " ", , four-inch original survey.
The Officer in charge of No. 9 Party, in addition to the work of his party, was allotted the preparation of a draft for a new chapter of the Handbook of 'Topography to replace the existiug chapter IV ('Traversing). This work, which had been begun the previous year, has been done in consultation with other officers of the Department. The draft has been submitted to the Surveyor General and is now at press.

In the summer months a detachment, consisting of one military officer and one SubAssistant Superintendent, accompanied the Political Oflicer of Sikkim on a mission to Bumtang to confer the insignia of the G.C.I.E. on His Highness the Mahāraja of Bhutin. It returned with the Political Officer through a portion of southern Tibet having obtained 6,500 syuare miles of geographical survey on the scale of four miles to the inch.

No. 9 PARTY (BENGAL, BIHĀR AND ORISSA).

By Bt.-Lt.-Colonel R. H. Phillimone, D. S. O., R. E.
The party completed the one-inch survey of sheets $79 \mathrm{~B} / 3.4 .7$, south of Calcutta, which had been left incomplete last season.

Perbonnel.

Chass I Officers.
Bt.- It.- ('olonel I., H. Phillimore, D. S. O., R. E., in cliarge.
C'aptuin R. S. I. MarIfor. I. A.. (on probation), from Januaty 201h. 1922.
Lient. II. , I. Bnzloy, li, F., (on proliation), frow Jannary $14 t \mathrm{~h}, 1922$.
Clios II Officers.

Mr. E. T. Miggio.
Mr. Amar Krisuma ilitra
Licut. ${ }^{\prime}$ S. MoCmer.
Captnin J. OO. Fitzpatrick, from Norember 1st, 10ㅇ.
Mr. Minturulta Nath Saha, M. Sc., (on probation).
Yoper suhordinate Serrice.

Mr. Gupal Ial Mitra.
Mr. Sinadlar Maknrice.
Mr. Lichini Kumar Taluparn. B. I . (on prolention).
Lower Suhorlinnte Sercier.
37 Sumerora, ctr.

It also surveyed the following sheets in Bihār on one-inch scale:-72 L/11.12.13.14.15. 16 and $72 \mathrm{P} / 1.2 .5 .6 .7$, besides completing sheets $72 \mathrm{~L} / 9.10$ which had been left incomplete in previous seasons.

42 square miles of forest were surveyed on two-inch scale in sheets $72 \mathrm{P} / \mathrm{s} .7$.

Sheets $72 \mathrm{C} / 14$ and $\mathrm{G} / 2$ were traversed for detail survey next season, and triangulation was carried out in south of sheet 73 G .

Field head-quarters were opened at Bhāgalpur on November 25th, $19 \because 1$ and closed on May 2nd, 1922.

Actual plane-tabling commenced in Bihar on November 17th, and the last man closed work in Bengal on May 8th, 1922.
4.3 officers and surveyors plane-tabled 3,771 square miles compared with 3,000 square miles by 42 plane-tablers last season.

The work in Bihar was divided into three camps as under:-
No. 1 Camp (5 trained surveyors, 1 instructor, 2 officers and 4 pupils under training) was under Mr. E.J. Biggie, and surveyed sheets $72 \mathrm{~L} / 9.10 .13 .14$.

No. 2 Camp (8 trained surveyors, 1 instructor and 1 officer and 5 pupils under training) was under Mr. A. K. Mitra, and surveyed sheets $72 \mathrm{P} / \mathrm{I}: 2.5$. 6.7.

No. 3 Camp (4 trained surveyors, 1 instructor and 1 officer and 8 pupils under instruction) was under Capt. Filzpatrick, and surveyed sheets $7.2 \mathrm{~L} / 11.12 .15,16$.

Very few of the surveyors here shewn as trained had done much contouring or hill survey before, and camp officers and instructors had to give a great deal of help all round.

The country is generally undulating between 300 and 900 feet above the sea, well covered with villages, scattered trees, broken ground and other detail. There are many isolated hills, generally rocky and covered with scrub jungle, the highest of which, Phuljuri in sheet $7 \mathrm{~d} \mathrm{~L} / 16$, rises to 2,312 feet.

These hills are prominent land-marks and plane-table fixings were generally easy to obtain; the ground did not however lend itself to rapid survey as there was a great deal of detail, and owing to the gentle undulations distant view and sketching were impossible.

In sheets $72 \mathrm{P} / 5.6 .7$ the Rajmahāl Hills rise to form a prominent range which runs somewhat east of north from Dumkā towards the Ganges river at Sàhibganj.

This range is rocky and now mostly bare or covered with low scrub; most of the forest having been cleared in the course of cultivation by the aboriginal inhabitants, the Paharias. The higher peaks rise to over 1,800 feet above the sea.

Communications throughout the district were very good; the main line of the East Indian Railway running through sheets $72 \mathrm{~L} / 10.11 .12$ with branch lines to Girìdih and Deogarh. There are several popular and growing health resorts along this line from Karmàtaur to Simultala, whilst Deogarh is rapidly becoming an important residential town, being a great place of pilgrimage for worshippers at the Baidyanath temples.

First class metalled roads radiate from Dumkā, the head-quarters town of the Santal Parganas district, to Bhägalpur, Deogarh, Rāmpur Hāt and Sūri.

The branch railway line from Bhägalpur to Mandar Hill in sheet $72 \mathrm{P} / 1$ was dismantled during the war, and has not yet been relaid.

The climate is good, being dry and bracing, but it gets very hot in April. There was very little sickness in these camps, though Mr. Biggie was in bad health most of the field season.

Supplementary survey on the 1 -inch scale was carried out over this area on blue prints of the preliminary editions. These were compiled by the Imperial Standard Mapping Section of the Bengal Drawing Office from Cadastral Surveys of 1901-08. The detail of these sheets was found very accurate and most helpful but in the more hilly area such detail was scanty.

The out-turn for the 17 trained surveyors averaged $24 \cdot 9 \mathrm{sq}$. miles for a month of 24 working days.
'The out-turn for $2 l$ officers and pupils under training averaged $15 \cdot 1 \mathrm{sq}$. miles.
'The quality of the final survey was good, though some of the pupils and younger men had to be taken over their ground several times. The survey of steeper hill details in sheets $72 \mathrm{P} / 6.7$ was not as good as it might have been. There were no cases of misconduct, but three pupils were discharged at the close of the field season as they were below standard.

42 square miles of rocky hills covered with sill forest were surveyed on the 2 -inch scale for the forest lepartment. The forests are not very valuable and rigorous survey of petty detail was not insisted on. The average out-turn for the two trained surveyors on this work was 9 sif. miles a month.

An unusually large number of khalasis absconded during the season, mostly Hos recruited from Singhbhum; and mostly from the equads of surveyors working within reach of tho railway. Out of 1! 1 men in Camps I and III 28 absconded.

The cost-rate of detailed survey worked out at Rs. $50 \cdot 7$ a mile as compared with Rs. 5 af a mile in Sumdarbans area last season. This rate is still very high as more than half the planc-tablers were under instruction.

The work in Bengal was allotted to Camp No. $1 V$ under the charge of Mr. J. P. Vastav who had it trained surveyors and one pupil under him for completion of 462 square miles left in shects $7913 / 3 \cdot 7$. Work lay to the south of Calcutta on both banks of the Hooghly river.

The area was absolutely fiat and densely populated and survey progressed very slowly
but was of very good quality; the four trained surveyors averaged 18.8 sq . miles for a month of 24 working days.

Mr. Gopal Lal Mitra relieved Mr. Vastav of charge of this camp on March 25th.
7 riangulation.-The whole of sheet 73 (\mathbf{x} was allotted to
Lt. C. S. McInnes.
Mr. B. N. Saha.
Surveyor Narayan Singh.
Neither of the two latter had done any triangulation before, and Lieut. McInnes had never done any minor triangulation.

No triangulation had been done by No. 9 Party since season 1913-14, so there are no trained khalasis or heliotropers in the party.

Lieut. McInnes left Jajpur Road Railway Station on November 12th 1921, and marched up to Keonjhar, reconnoitring on his way, to meet Mr. Saha and surveyor Narayan Singh who marehed down from Chakradharpur Railway Station through Chaibāsa.

Mr. Saha fell ill before reaching his ground and had to take leave. He returned later and commenced work on February $1+t$ h, having lost the best part of the season.

Lieut. MeInnes and Narayan Singh both found progress very slow owing to lack of communications and the nature of the country, which was heavily wooded and without prominent features. Their areas were therefore cut down to half, and even then they did not commence observations till the last week of February.

There was the usual heavy smoke haze right through March and April, with hardly any relief from thumelerstorms.

Lieut. MeInnes just managed to complete the triangulation of the four sheets forming south-east guarter of 73 G by the end of April, whilst surveyor Narayan Singh did not quite complete sheets $73 \mathrm{G} / 10.14$.

Surveyor IIari Dutta was bronght down to assist in February after completing his traverse work. He and Mr. Saha managed to complete reconnaissance of the four sheets forming the south-west quarter of 73 G , and they both observed a few triangles without completing any one sheet.

All of these triangulators and many of the khalasis suffered a good deal from malaria.
Next season the triangulators will be able to start observations in November over the area now reconnoitred, and there should be no difficulty in completing the triangulation of the sheet.

The quality of Lieut. MeInnes's work was good. His triangular errors averaged 10 seconds for 38 triangles; he fixed 30 statious and 100 points in his four sheets, connecting to three (G. T. stations and one G. T. mark.

Trarersing.-Surveyor Hari Dutta spent three months, November 8th to February 6 th, traversing sheets $72 \mathrm{C} / 14$ and $(\dot{i} / 2$ in the neighbourhood of Patna. These two sheets were calastrally surveyed on the 16 i-inch scale in various seasons between 1892 and 1910 .

Hari Dutta based his traverse on six G. T. intersected points, and connected with 1 . trijunction pillars of the calastral traverse. He ran $22(\operatorname{lin}$ lar miles with average error 1 in 500 , or 10 fert to a lincar mile. He fixed 227 intersected points by observation and 230 points by offset. He reports that about 100 square miles in these two sheets are very concrested city and suburban areas; whilst the remainder are open and very easy for survey.

The preliminary pelitions on one-inch scale in Patna district are accurate and up to date, for surh detail as they shew; but in the other districts the old map is not very reliable. Survevor Hari Dutta was the only member of the party to report interference by noncooperators. He met with some opposition near Sonpur in Siran district, but was assisted by the more educated of the inhabitants, and did not have to suspend work.

Recess Duties.-When the party took the field in November 1921 it left a drawing section behind in Shillong under Mr. G. L. Mitra to complete sheets $72 \mathrm{~L} / 6$ and $79 \mathrm{~B} / 5.8 .10 .11$. 12.15 and $79 \mathrm{C} / 5.9$. The section contained 7 draftsmen from No. 5 Drawing Office and one surveyor who rejoined the party in the field in January.

The last of these sheets to be submitted for publication was $79 \mathrm{~B} / 5$ in June 1922. 'This sheet covers the very congested area along the Hooghly river north of Calcutta.

The party opened fair-mapping in recess on May l2th, with one arrears' sheet and 16 new sheets. Of these 10 sheets were still uncompleted on November lst, 1922 . Seven draftsmen were attached from No. 5 Drawing Oflice for the greater part of recess.

Much time was saved at the beginning of recess by locating an officer from the party in the office of the Superintendent, Map Publication at Calcutta for three weeks.

This officer handed ficld sections into the Superintendent, Map Publication's office, took over the enlargements from Photo-Litho. Office, pasted up the combined prints, and handed them in again to Photo-Litho. Office for production of the drawing blue prints. The time taken by the journey of the enlargements to Shillong, and return of the paste-up print to Calcutta was saved by this arrangement, and the effect is shewn in that the average period between handing in field scetions to Calcutta and receipt of drawing blue prints in Shillong averaged 21 days in 1922,4 d days in 1921 , and 39 days in 1920.

Lient. Bazley, R.L. who was in Calcutta from April 27 th to May l6th was able to assist No. lz Party in the same way.

Fair-mapping was sulervised by the following officers:-
N^{\prime} o. I Section, under Mr. Li.J. Biggie, with sheets $72 \mathrm{~L} / 9.10 .13 .14$.
No. II Section, under Mr. A.K. Mitra, relieved in September by Lieut. C.S. MeIanes, with sheets $72 \mathrm{P} / 1.2,5.6 .7$.

No. III Section, under Captain J. O'C. Jitzpatrick, with sheets $72 \mathrm{~L} / 11.12 .15 .16$.
No. IV Section, under Mr. G. L. Mitra, relieved in Angust by Captain R.S.P. MacIvor, with sheets $70 \mathrm{~B} / 3.4 .7$.

Computations.-Triangulation.-The triangulation of sheets $73 \mathrm{G} / 11.12 .15 .16$ was computed by Lieut. C.S. McInnes and Mr. B.N. Saha with one surveyor.

Traverse-Lient. Bazley, R. E. held charge of traverse computing section which completed computations of traverse in sheets $72 \mathrm{C} / 14$ and $\mathrm{G} / 2$.

The section also assembled all the traverse computations of sheets $79 \mathrm{~A}, \mathrm{~B}$ and C and 72 P into record volumes by degree sheets.

Lists of intersected and offset points were prepared and bound into the volumes, and diagrams were prepared for each degree sheet shewing the traverse lines, and the errors found in them
'The average errors worked out as under :-

- -	Main Circuits.		All lines including Main Circuits.		Worst line.	
	Jinear miles.	A verage Cloning Eriors.	Linear minles.	A verage Closing Errors.	Linear miles.	Error passed.
79 A.	958	$\frac{1}{1553}$	1740	$\frac{1}{1427}$	10	$\frac{1}{282}$
13.	928	$\frac{1}{120}$	1672	$\frac{1}{973}$	$2 \cdot 5$	$\frac{1}{73}$
C.		not	yet	worked out	\ldots	\ldots
72 P .	\cdots	"	"	"	\ldots	

Lieut. Bazley also supervised work of plotting section which commenced in August to prepare plane-table sections for the field.

No. 10 PARTY (UPPER BURMA).

By Captain O. Slater, M. C., h.E.

The party continued the detail survey of the Hukawng and the Nāgā territory adjoin-

Pehbonesl.
Clase I Officers.
Lient. Colonel E. T. Rich, C. I. E., R. F., in charge from 24th October 1921 to 111 L Jnne 1922.
Captain O. Slater. M. C., R. E. (on probation), in charge from 12th Jane 1922.

Class $1 I$ Officers.

Mr. W. G. Jarbo, in charge till 23rd October 1921.
, S. F. Norman, from 11th Angnst 1922.
, O.J.H. Hart, from :3 3rd December 1921 to 31st May 1922.
, F. J. Grice, from 1st November to 30th December 1921.
, H. II. Creed.
Upper Subordinate Service.
Mr. Haynt Mubammad, K. S.
, Dbirendra Nath Suba.
… Ram Prasid, H. S .
Mang Pe, A. T. M.
Lover Subordinate Service.
26 Surveyors, etc.
7 surveyors, completed an area of 2,221 square miles on the half-inch scale in sheets $83 \mathrm{~N} /$ ne., $92 \mathrm{~A} / \mathrm{sW}$. se and $92 \mathrm{~B} / \mathrm{NW}$.

No. 2 Camp.—Under Mr. H. H. Creed with 6 surveyors completed an area of 947 square miles on the half-inch scale in sheets $92 \mathrm{~B} / \mathrm{NE}$. NW . sE.
'The total out-turn was 3,168 square miles of original half-iuch survey, the costrate being Rs. $33 \cdot 5$ per square mile.

Triangulation.-Mr. Ram Prasad, R.S., was to have triangulated in parts of sheets 8;) N and 83 O but, owing to the hostility of the Nāgà tribes, had to turn back and was afterwards employed on plane-tabling.

Recess Duties.-The fair-mapping of the party was in the charge of Mr. W.G. Jarbo till Mr. S.F. Norman was posted to the party, after which it was divided into two sections.

No 1 Section, under Mr. W. G. Jarbo, with Mr. D. N. Saha and 7 surveyors and 4 draftsmen, completed the fair-mapping of 2,608 square miles in sheets $83 \mathrm{~N} / \mathrm{NE}, 9: \Lambda / \mathrm{sw}$. se. and $92 \mathrm{~B} / \mathrm{NE}$.

No. 2 Sectinn, under Mr. S. F. Norman, with Maung Pe, A. T. M., and 3 surveyors and 3 draftsmen completed $1,705 \cdot 5$ square miles in sheets $92 \mathrm{~B} / \mathrm{N} w$. sE.

All the above sheets will be submitted for publication before the party takes the field. The unsurveyed portions of sheets $83 \mathrm{~N} / \mathrm{NE} ., 92 \mathrm{~A} / \mathrm{sW}$. sE. have been compiled from old surveys and reconnaissance surveys. The remaining 6:37.7 square miles in shects $92 \mathrm{~F} / \mathrm{vW}$. sw. and $92 \mathrm{I} / \mathrm{sw}$. se. were completed during October 1921 and these sheets were submitted for publication before the party left for the field.

Maymyo Irawing Office.-Juring the field season a drawing office was formed to deal with the arears fair-mapling of Nos. 10 and 11 Parlies. This was in the charge of Mr. O. J. H. Hart. The area rompleted was $5,630 \cdot 6$ square miles in sheets $92 \mathrm{~B} / \mathrm{NE} ., 92 \mathrm{~J} / \mathrm{NW} . \mathrm{se}$. NK.. $95 \mathrm{~J} / \mathrm{SE}, 95 \mathrm{~K} / \mathrm{NE}$. and $95 \mathrm{~F} / \mathrm{NE}$.

The total ont-turn of fair-mapping of the party was $10,582 \cdot 1$ square miles, all on the half-inch scale, the cost-rate being Rs. $4 \cdot 0$ per square mile.

Inspections.-The party wasinspected by the Surveyor General and the Superintendent. Eastern Circle during the recess.

No. 11 PARTY (LOWER BURMA!.

By J. O. Gretff.
The field programme of the party was as follows:-
(i) The completion of the survey of the

I'ersonnrl.
Class I Officers.
Mr. J. O. Greiff, in charge from 1sc Jaly 1922.
Captain T. M. M. l'enneg. R. E. (on probation), in clarge to 3 uth June 1922.

Class II Officers

Mr. O. J. H. Harl. from 1st June 1922.
" G. E. R. Cooper, from 19th Ot: C ober 1921.
, A. V. Dickson

> Upper Subordinate Service.

Mr, P. C. Fen Gupta, B. Sc.
Kiban Mubammad.
, A. K. Sen Gupta (on probation), from 25th Mas 1922.

> Lower Subordinate Service.

24 Survepors, ete. mainland of the Mergui district and of Sullivan or Lampi island, on the one-inch scale.
(ii) The survey on the 2 -inch scale of the reserved forests of Kyaikkamaw and Extension, Kyônkhawun, and Tagundaing, in the Amherst district.

The field season opened at Mergui on the 15 th November l02l, the heal-guarters of the party arriving on the $2: 3 \mathrm{rd}$. An advance party sent abead to make the necessary initial arrangements opened at Mergui on the lst November. The field scason closed at Mergui on the $\overline{\mathrm{D}}$ th June $19 \because 2$.

The health of the party was good; one khalasi died of fever in Mergui.

The country surveyed comprised, in the Mergui district, the most sonthem strip of the mainland of Burma extemding from the village of Karathuri in the north to Victoria Point in the sonth, Sullivan or Lampi island in the Mergui Archipelago, and numerous small islands dotted along the west coast. This strip of comntry consists of the sonthern portion of the western range of mountains which stretch across the district from north to south. A few miles below the village of Karathmi, this main range is joined by a cross spur to the castern barrier that forms the divide between Burma and Siam. At the bend of this cross spur is thrown out the high contimuation ridge which trends due south, and terminates in the high promontory of Vietoria Point. Here, as thronghout the length of the district, contiunes the characteristic meridional direction of the main ranges, and conseguently of the main dranage system. Practically the whole of this sonthern strip of country is filled by numerons offshoots and subsidiary spurs of the main ridge. From the water edge to the tops of these ridges and spurs there is almost uninterrupted forest.

This area is drained by the Lenya and the Pakehan rivers, which have their source in the cross spur connecting the two main ranges. The former flows for some 60 miles, due north, through a fairly broad valley, when it suddenly alters its course, and forcing its way through a rocky gorge flows due west into the Bay.

The Pakchan river flows due south, and throughout its course forms the international boundary between Burma and Siam, for this most southerly strip of country. For the first part of its course it is a mere mountain torrent, but fell by many affluents, it broadens out, till at Vietoria Point it forms an estuary two-and-a-half miles wide. In the low ground, along its right bank, stretehes for some distance a plain richly cultivated and well inhabited.

The coast line and the banks of tidal rivers are almost invariably bordered by mangrove swamps, varying from narrow strips to great depths, which form powerful barriers against the sea. They are intersected by numerous canals through which the tide enters and recedes, inundating large arcas at high water, as the coast here is little raised above sea level. From these swamps stretch ont to sea numerous mud and sand banks rendering the coast unapproachable by vessels of large dranght, except in a few places. Most of the larger chanuy, (streams or creeks) are navigable for considerable distances at high water, by small launches and country boats.

The western shores of the mainland swarm with game of all sorts; elephant, tiger, rhino and bison are plentiful.

The low lying area and the bamboo forests are the haunt of the sandfly and tick, which make the surveyors' life a burden. If he beats a retreat from these into the valleys be is beset by countless leeches. The undergrowth is a tangled mass of cane, creeper, and scrub.

In the valleys the mist lies heavy each morning till late, considerably hindering the commencement of the day's work.

The country between Maliwun and Victoria Point consists of undulating plains and hills covered with grass and dotted with trees, somotimes in clumps or groves, and here and there in small forest areas.

From Victoria Point to Maliwun there is a grood unmetalled road maintained by the P. W. D. From Maliwun it becomes a mule-track as far as Marang, and thence to Karathuri a foot-path. Along the west coast is another track to Maliwun. There are also grood paths from Hangapru to the Lenya valley, and along this valley, over the Khao Den pass, to Siam. These communications, with the addition of several elephant-tracks along spurs and ridges, made it possible to start work without the delay, experienced in previous years, in cutting miles of paths.

The principal place of importance in the season's work is Victoria Point, the last British out-post on the east coast. It is the head-quarters of the sub-divisional officer, its position and proximity to Siam investing it with a certain political importance. During the Great War a wireless station and Censor were established here. This southern strip of territory is also rich in tin ore, the chief centre being Maliwun; the ore at present is being extracted chielly by Chinese.

Lampi or Sullivan island about 50 miles due west of Karathuri, is a high ridge of hills in the form of a horse shoe densely wooded, the outer rim of the shoe being steep and precipitous. Several smaller islands along the west coast were also surveyed. The Archipelago is without doubt one of the great attractions of the district, and well worth a visit. It stretches aloug the whole of the western coast a vast collection of abrupt islands, of every shape and size with hardly a trace of life. They have been well described as "a cluster of islands and inlets with bays and coves, headlands and highlands, capes and promontories, high bluffs and low shores, rocks and sands, fountains, streams and cascades, mountain, plain and precipice, unsurpassed anywhere for their wild, fantastic and picturesque beauty".
*Distribu/ion.-The field work was divided up into four camps:-
No. 1 Camo.-Mr. Cooper in charge, to begin with five and later seven surveyors, head-quarters at Hangapru, surveyed an area of 1,071 square miles in sheets $96 \mathrm{I} / 8.12 .16$, $96 \mathrm{~J} / 56.9 .10 .13$ and $96 \mathrm{~N} / \mathbf{1}$. The party hospital was in this camp.

No. 2 Camp.—Mr. Dickson in charge, with five surveyors, of whom one was later transferred to No. l Camp, head-quarters at Marang, surveyed an area of 56 s square miles in sheets $96 \mathrm{~J} / 9.10 .11 .12 .14 .15$.

No. 3 Camp.-Mr. P.C. Sen Gupta in charge, with seven pupils, surveyed an area of 170 square miles of reserved forests in the Amherst district, on the two-inch scale in sheets $95 \mathrm{E} / 13$ and $9 \pm \mathrm{H} / 16$. One pupil was withdrawn early in the season as unfit for field work.

Nn. 4 Cnmp.-Mr. Khan Muhammad in charge, with two surveyors, surveyed 350.88 equare miles in sheets 96 , J/1.2,3.5.6.7.11.12 and $96 \mathrm{~K} / 9$.

Mr. Khan Muhammad and surveyor Faiz Ali, under the officer in charge of the party, surveyed near the close of the season, 35 square miles in shect $95 \mathrm{~L} / 8$.

Iriangulation.- Where was no triangulation or traversing done in the season.
The cost-rates are as follows :-

$$
\begin{array}{llll}
\text { Original one-inch } & \ldots & \text { Rs. } 69 \cdot 72 \text { per square mile. } \\
\text { Original two-inch } & \ldots & \text { Rs. } 133 \cdot 63 & \text { do. }
\end{array}
$$

The cost-rate for the one-inch is much lower than the previous year, due to a higher average out-turn per surveyor. The outstanding feature of the field season was the remarkably fine weather experienced compared with previous seasons. Wet days there were, but comparatively few. Communications were easier, the greatest width of country across being about 2.5 miles with Victoria Point as apex of the triangle. The mean average, for three years preceding 1920-21, is Rs. 71.22 per square mile, which may be taken as the general average cost of work in a district like Mergui. Last season's cost-rates were weighted with large arreats of pay due to officers and establishment on account of the reorganization.

Krepss Dutirs.-In recess the party was divided into three sections:-
No. I Section.-Mr. Hart in charge, completed the mapping of one-inch sheets $95 \mathrm{~L} / \mathrm{B}, 96 \mathrm{~J} / \mathrm{t} .9 .3 .5 .6$. The total area covered by these sheets is $1,750 \mathrm{fg}$. the land area mapped is only 246 spuare miles. Nevertheless, in the sea area there is a fair amount of work required to complete each sheet. This section has also done 69 square miles of half-inch mapping in sheet $95 \mathrm{~F} / \mathrm{se}$. and completed and despatched half-inch sheets 9.) J/Be, and $9 \mathrm{~B} \mathrm{~K} / \mathrm{Nr}$.

[^0]No. 2 Section.-Mr. Cooper in charge, completed the mapping of one-inch sheets $96 \mathrm{I} / 12.8,96 \mathrm{~J} / 9.10 .11 .7$. The total area of these sheets is 1,176 square miles, inclusive of 272 square miles sea area.

No. 3 Section.-Mr. Dickson in charge, completed the mapping of one-inch sheets $96 \mathrm{I} / 16$. $96 \mathrm{~J} / 12.8 .13 .14 .15,96 \mathrm{~K} / 9.5$, and $96 \mathrm{~N} / \mathrm{l}$, covering an area of 1,756 square miles, includingr $11 \cdot 6$ square miles sea area, and 885 square miles of unmapped area in Siam.

The cost-rate for one-inch mapping is Rs. 15.27 per square mile.
All the fair-mapping will be completed and the sheets despatched before the party takes the field. There will be no arrears sheets.

The two-inch mapping, of the reserved forests of Kyaikkamaw and Extension, Kyônkhawun, and Tagundaing, falling in sheets $95 \mathrm{E} / 13$ and $94 \mathrm{H} / 16$, will be commenced by this party and completed by the Drawing Office during the winter.

The Maymyo Drawing Office was transferred to the charge of No. 10 Party from lst November 192 I.

Miscellaneors.-The season brings to a close the completion of the survey of the Mergui district. Inspite of the physical hardships and inconveniences endured yearly since 1915, it would be diflicult to find a more interesting aren in Burma. Its history from the year 1373 when the town of 'Tenasserim was built by the Kingdom of Siam, world wide commerce and convection with the great European Courts, is replete with historical interest and incident. Its rugged and wild landscapes with miles of dense forest growth, have an attraction and charm peculiarly their own. Many very interesting and rare srecimens of butterflies were caught by Mr. Cooper last field season. Nineteen new species of the Indian Lepiduptera were obtained, at Hangapru the Papilio sycorar, and at the village of Naugin, on the coast, the Trrias tilaha. The former is very rare and said never to have been caught in India before, and is supposed to be peculiar to Borneo, of the latter 23 specimens were taken, and are described as belonging to the Malay States only.

Inspections.-No. 3 Camp was inspected in the field by the Superintendent, Eastern Circle in January. During the recess the party was inspected by the Surveyor General, and Superintendent, Lastern Circle, on the 9th August 1922.

No. 12 PART'Y (ASSAM).

By Bt.-Lt.-Col. C. M. Browne, C.M.G., D.S.O., R.E.

The party carried out detail survey on the two-inch, one-inch and half-inch scales in

Yehsonnel.
Class I Oficer.
Bt.-Lt.-Col. C.M. Browne, C.M.G., D.S.O., R.K., iv cbarge.

Class IC Officers.
Mr. E. M. Kenny.
,, L. K. Kennick, M.B.E

1. IV. C. Hanson, from 16th Februbry 1022.
, I'rafulla Chandra Mitra, B. A., up to l5th April 1922.

Uyper Subordinnfe Service.
Mr. (iirija Sonher Ba chi.
" Alul Chnorlra Maulick, (on probatiou), from 17til October 1921.
, Suresh Chmucira Cbntierjec, 13.Sc. (on proba. tion), from 23ril May 1 H22.

Lomer Subordillade Service.
3A Snryegors, ete. the districts of Nowgong, Sibsigar, Cāchār, Näga Hills and in Manipur State and triangulation and traverse in Nāgā Hills, Manipur State and Sadiya Frontier Tract. The country was almost entirely densely wooded and varied in elevation from a few handred feet to over 9,000 feet.

The field season extended over a period of a little more than 6 months. 'The health of the party was only fair, average daily sick in hospital being a little over 8 per diem; 3 khalāsis died, one from cholera, one from pneumonia and one was drowned.

Towards the close of the field season, cholera was bad in the neighbourhood of the party headquarters, but inoculation was carried out with serum obtained from the Pasteur Institute at Shillong and only one case occurred and that was before the inoculation.

Plane-tabling.-The country surveyed was almost entirely dense jungle with scattered villages and there were some quite large areas (mostly in reserved forests) which were uninhabited.

Coolies were the only means of transport, except the three party elephants. Conveyance and jungle clearing charges were in consequence heavy. Work in the plains and low hills was carried out by plane-tabling traversing based on theodolite traverses and in the hills by interpolation.

The party was divided into three camps:-
No. 1 Camp, head-quarters Lumding, under Mr. E. M. Kenny with 9 surveyors surveyed 104 square miles on the half-inch scale, 439 square miles on the one-inch scale, and 134 square miles of reserved forests on the two-inch scale in parts of sheets $83 \mathrm{G} / \mathrm{NW} \mathrm{NK}$.

No. 2 Camp, head-quarters Māhūr on the hill section of Assam-Bengal Railway, under Mr. D. K. Rennick, M. B. E., and one Upper Subordinate officer with 12 surveyors and one pupil surveyed 564 square miles on the one-inch scale and 779 square miles on the half-inch scale in sheet $83 \mathrm{G} / \mathrm{sw}$. and in parts of sheets $83 \mathrm{G} / \mathrm{NW}$. SE. NE

No. 3 Camp, head-quarters Dimāpur, under Mr. R. C. Hanson with 7 surveyors surveyed 179 square miles on the one-inch scale in parts of sheet $83 \mathrm{G} / \mathrm{NE}$. This camp was only formed towards the end of the field season.

The total area surveyed was 883 square miles on the half-inch scale and 1,182 square miles on the one-inch scale and 134 square miles on the two-inch scale, the cost-rate being Rs. $25.5,55.2$ and 111.8 respectively and the combined cost-rate Rs. 82.

Trianyulation.-Triangulation was carried out by Mr. P. C. Mitra in sheets $82 \mathrm{~L} / \mathrm{sE}$. $82 \mathrm{P} / \mathrm{sw} . .83 \mathrm{I} / \mathrm{Ne}$. and $83 \mathrm{M} / \mathrm{sw}$., and by Mr. G. S. Bagchi in sheets $83 \mathrm{G} / \mathrm{se} .83 \mathrm{~K} / \mathrm{sw}$. and $83 \mathrm{H} / \mathrm{Ne}$.

The country was mostly densely wooded hills rising to about 9,000 feet and a large amount of jungle clearing was necessary ; labour and supplies were difficult to obtain.

In Mr. Mitra's area rain, mist, and haze interfered with the observations and his work had to close in March on account of them. A total area of 3,376 square miles was triangulated at a cost-rate of Rs. 7• 0 per square mile.

Trarer:ing.- Traversing was carried out to assist the detail surveyors in the plain portions of sheets $83 \mathrm{G} / 1.5 \mathrm{G} .9 .10 .13$ and in sheets $83 \mathrm{l} / 13.14$., $83 \mathrm{M} / 1.25 .5$ traversers were at first employed, later reduced to 4 . The dense jungle made the work laborious and expensive and supplies, and even water, were in parts difficult to obtain. Most of the traversers suffered from sickness, the out-turn is consequently small and the cost-rate high.

277 linear miles were traversed covering an area of 1,017 square miles; 2,850 stations were observel at, of which 21 can be considered as permanent. The cost-rate per linear mile was lis. $73 \cdot 2$.

Recess Duties. - The fair-mapping was divided into 3 sections:-
No. 1 Scction, under Mr. E.M. Kenny, carried out the fair-mapping of $83 \mathrm{G} / 5$ on the one-inch scale and maps of Dhansiri and Rangapahär reserved forests on the two-inch scale and part of $83(\mathrm{G} / \mathrm{siv}$. on the half-inch scale.

No. 2 Section, under Mr. D.K. Rennick, M.B.E.,carried out the fair-mapping on sheets $83 \mathrm{G} / 3+$ on the one-inch scal and of $83 \mathrm{G} / \mathrm{sw}$. on the half-inch scale.

No. 3 Strfin", under Mr. R.C. Hanson, carried out the fair-mapping of sheets 83 G/9.13 on the one-inch and part of $83 \mathrm{G} / \mathrm{NE}$. on the half-inch scale.

There were no arrears from last recess and it is confidently expected there will be none this recess except those, the survey of which, is not complete.

Lieut. H.A. Bazley, R.E., of No. 9 Party, temporarily at Calcutta, assisted very areatly by making the combined originals in Calcutta from photographs of the field sections, thereby eaving much valuable time at the beginning of recess.

The policy of the parts, in drawing its own forest sheets was continued and it has been able to complete them withont detriment to its standard mapping.

The half-ineh maps, being drawn simultaneonsly with the one-inch, has also proved successful and will lessen the work of the Circle Office.

Mr. G.S. Bagehi and 4 computers and 3 traversers completed the computations of the triangulation and traversing done during the field season and completed the four-inch boundary plots of the following forests:-Dhansiri and Rangapahār, Narpuh blocks I and II and will be submitted. Triangulation chart 83 C was compiled and will be submitted.

Inspeclions.- The Superintendent, Eastern Circle inspected the party in the field in December 1921.

No. 21 (BURMA FOREST) PARTY.

By H.W. Biggie

This party continued forest survey operations in Upper and Lower Burma and the

I'ersonnel.
Class 10 Iffer:
Mr. H. W. Biggie, in charge from 1st July 1922. Class II Officers.
Mr. S. F. Norman, in charge, ap to 30th Juae 1922. Lieut. L. B. Fitz-Gibbon.
Capt. V. P. Wainright.
Cnpt. C. B. Sexton.
Mr. H. M. Criteliell. (on probation).
Upper Subordinate Sermice.
Mr. Dalbir Rai. up to lat June 1922.
., Ghulam Hasan.
Lower subordinate sernice.
20 Surverors, ete. Southern Shan States. The country over which work was carried out consists generally of well-wooded hills.

The field season was spread over a period of seven months from November 1921 to June 1922.

There was a good deal of sickness, principally due to malaria, in the forests. Among the lower subordinates two deaths occurred during the year, one from fever in the field and the second from plague in Maymyo.
Planc-tabling.-This was carried out by the party in the Mansi Division in the Upper Chindwin district of the Northern Forest Circle, and in the Bassein Division of the Delta Forest Circle, and by the Survey 'Training School in the Meiktila and Southern Shan States Forest Divisions in the Central Forest Circle. The area surveyed in the Mansi Division completed the Modē reserve which consists of well-wooded hills which are steep and rugged on their upper slopes. The country worked over in the Bassein Division includes portions of the eastern and western slopes of the Arakan loma. These are thickly clad in trec growth with scrub jungle in parts. Between the lower slopes and the Ngawun or Bassein river, the country has a very clense belt of bamboo called kayin wa in Burmese. With its growth of numerous single reeds with intervals of about one foot and which rise to an average height of :30 feet, it was a formidable obstacle to progress, and line clearing was a ledious and disheartening labour. One of the small reserves surveyed in Bassein lies in swampry ground on the left bank of the Bassein river. The comery survered in Meiktila consists of low, well-wooded hille. In the Sonthern Shan States the Kalaw reserve and the town of Kalaw which is an exclusion in the centre of the reserve, were survered. Kalaw, which is the head-quarters of a sub-division is flat for the most part and is surrounded by undulating pine-clad hills, on the lower slopes of which mumerous residential honses exist. The reserved area lies all round the town, and is hilly everywhere, the hills in the south rising to 5,000 feet.
lield work was distributed and completed as follows:-
Mr. Ghulam Hasan surveyed 3-65 square miles on the four-inch scale in the Modes reserve falling in $83 \mathrm{P} / 9$ and moved into the Bassein area in March 1922, when he started plane-tabling on the two-inch scale, with one pupil under instruction.

No. 1 Crmp, 一Mr. Norman, in charge, with four pupils completed by the middle of lebruary 1922, $9 \cdot 26$ square miles on the two-inch scale in the Shwemyindin reserve lalling in $85 \mathrm{~L} / 13$.

No. 2 C(ump,-Captain Wainright, in charge, with ten surveyors and two pupils, reinforced in February by four pupils from No. 1 Camp, completed 111 • 11 square miles on tho two-inch scale in the Podaw, Kyeintali and Sitsayan reserves falling in $85 \mathrm{~K} / \mathrm{II}$. 12. 15. 16 . This area includes 17.72 square miles of unclassed forest. He made over charge of this ramp to Mr . Ghulam Hasan in the first week of May leaving in the camp cight surveyors and two pupils and took with him to Maymyo where he arrived about the middle of May, $\because 2$ surveyors and 4 pupils to form an advance drawing section.

Mr. Ghulam Hasan with eight surveyors and three pupils completed between the first week of May and the close of the field season, $26 \cdot 50$ square miles on the two-inch scale in portion of the Chaungtha reserve falling in $85 \mathrm{~L} / 9$.

Captain Sexton with eighteen pupils, working in pairs from the Survey 'lraining School and one trained surveyor from the party surveyed $25 \cdot 39$ square miles on the two-inch scale in the Kubyin rescrve falling in $93 \mathrm{D} / \mathrm{s}$, and $16 \cdot 21$ square miles on the four-inch scale in the Kalaw reserve falling in $93 \mathrm{D} / 10$. Of the latter area, the trained survevor contributed $2 \cdot 00$ square miles in 26 working days. Maung Pe, A.'T.M., from No. 10 Party and paid for by that party, assisted Captain Sexton in the supervision and instruction of pupils.

The cost-rates, calculated on the areas done by the party only, are:-two-inch, Rs. $338 \cdot 1$ per square mile ; four-inch, Rs. $1,059 \cdot 9$ per square mile.

A high degree of accuracy in the work was sought and obtained at some sacrifice in expenditure and out-turn, but the resulting maps should be found to be thoroughly reliable for any purpose. The precision, with which the survey was done, is more than is necessary for the requirements of the Forest Department and if minuteness was done away with, out-turns could be considerably improved without, in any way, lessening the utility of the maps.

The amount debitable to instruction in all classes of work during the year is Rs.13,544.
Triangulation.-This was carried out by Mr. Critchell over 100 square miles in $85^{5} \mathrm{~L} / 9.10 .11$ on the Arakan Yoma already described. It was his first experience and he encountered difficulties in dealing with the technicalities of the work. The cost-rate works out to Rs. $80^{\cdot 1}$ per square mile.

I'raversing.--This was carried out in portions of $85 \mathrm{~L} / \overline{5.6 .7 .8 .9 .10 .11}$ and $94 \mathrm{C} / 14, \mathrm{G} / 4.8$, $H / 1,6.6$ in the Bassein and Thaton Forest Divisions respectively. The country traversed in Hassein lies in the drakan Yoma which has been described under the head Plane-tabling. In the Bassein Division the following reserves were traversed :-Chaungtha, Mézali, Thitpôk, and the greater portion of Myittaya and Sinma. In the Thaton Division the following reserves were traversed:-Wetwundaung, Bilin, Panbein, Kyônsein, Danu, Kalamataung and Martaban. With the exception of Kyônsein all these reserves consist of low well-wooded hills. The ground in the Kyônsein reserve is generally flat; and so far as information is available, fairly densely clad in tree and scrub jungle. About 200 exclusions, many being very small fruit gardens, lie scattered over the Thaton reserves and arrangements are being completed with the Forest Department to survey them on a scale larger-depending on their size-than $\underset{\sim}{\sim}$ inches to one mile. In any case the scale of survey will not be larger than 8 inches to one mile. The Conservator, Working Plans Cirele desires that they should be shown as insets in the blank portions of the published sheets.

Lient. Fitz-Gibbon was in charge of the traverse work throughout the year, the work in the field being divided as follows:-

No. 1 Section, with head-cpuarters at Kanni, a village in the Bassein district, was supervised by Lieut. Fitz-Gibbon with two computers and cight traversers.

No. 2 Section was supervised by Surveyor Lalit Mohan Ganguly with three traversers he bimself doing 103 linear miles of traversing, a very creditable performance.

590 linear miles consisting of 57% linear miles of boundary traversing and 13 linear miles of simple traversing and covering an area of 520 square miles were traversed for work on the two-inch scale and the cost-rate including the cost of computations in recess, works out to Rs. $10 \pm^{\cdot 1}$ per linear mile.

Recess Duties.-(a). There was one section employed on fair-drawing. This was under Captain Wainright assisted by Mr. Critchell and seven draftsmen.

The following reserves were fair-drawn :-Podaw, Kyeintali and Sitsayan and adjoining unclassed forest, covering a total area of $111 \cdot 11$ square moles in one sheet on the two-inch scale, including portions of $85 \mathrm{~K} / 11.1 \mathrm{c} 1 \mathrm{~h} .16$; Shwemyindin $9 \cdot 26$ square miles on the two-inch scale in $55 \mathrm{~L} / 13$; portion of Chaungtha 26.50 square miles on the two-inch scale in $85 \mathrm{~L} / 9$; Kuby in $95: 39$ square miles on the two-inch scale in $93 \mathrm{D} / 5$; Kalaw including Kalaw Town, which is an exclusion in the reserve, $16: 21$ square miles on the four-inch scale in $93 \mathrm{D} / 10$. The estimated out-turns of fair-drawing for which credit has been taken are $44: 4$ square miles and 1696 square miles on the four-inch and ifo-inch scales respectively. The costrates are:-four-inch, Rs. 140% per sfuare mile; two-inch Rs. $47 \cdot 1$ per square mile.

Arrears of fair-drawing show $5 \cdot 0$ square miles in the sheet containing the Podaw, \mathbf{K} reintali and sitsayan reserves. This is due to its name trace completed and submitted a second time in July 192\% to the Divisional Forest Officer concerned, having been destroyed by the carsizi g of a boat which a subordinate, who was deputed to verify the names was using. The information reached the party in September and early action to get the remaining names verified has been taken.

4" square miles remain to be surveyed in the Chaungtha reserve during 1922-23 and this will be fair-drawn in 1923 and added to $26: 50$ square miles already drawn to be published in one sheet.
(b). Other recess duties included the fair-drawing by the Survey Training School on the four-inch scale, from four-inch surveys done by the Forest Department, of 2.83 square miles, covering Blocks XII and XIII of the Kuladan reserve in $84 \mathrm{C} / \mathrm{s}$; in Akyab, and $7 \cdot 00$ square miles, being portion of Block XIV of the same reserve in $84 \mathrm{H} / 1$ in the hill district of Arakan.

The traverse computations during recess were under Lieut. Fitz-Gibbon assisted by 11 computers, of whom 4 were pupils whose help became necessary. The pupils were quick to pick up the use of the traverse tables and have expedited the work which includes the final calculation of the co-ordinates of over 13,000 stations.

Four-inch boundary plots have been prepared for all reserves surveyed on the two-inch scale, and the cost of these is merged in that of the fair-drawing on the same scale.

Towards the end of August 1922, the work was taken in !and of projecting ${ }^{40}$ planetables for original forest surveys on the two-inch scale, and for the addition of boundaries of old two-inch survers of certain reserves of the South Pegra and Iusein Forest Divisions during field season 1922-23. The plotting of some 13,500 traverse points for field work and the duplication where necessary of notifications and maps of reserves has also been taken in hand. These duplicates are issued to camp officers and they help in the adjustment of boundaries in the field. Copies of values of traverse points are also in hand for distribution to camp officers.

Miscollancous.-A great dificulty in Bassein is the rationing of men with suitable transport. Elephants are the best means of clealing with this question. The Forest Department will not be able to supply the party with the full number of animals recfuired for use during field season 1922-23, and porterage by Hazaribägh men has been arranged to the extent required. The Deputy Commissioner, Bassein has also been requested to arrange for a first month's supply of rice at camp head-quarters to be taken over by camp officers as soon as they arrive in their ground. Subsequent requirements will be arranged for by them.

Inspections.-The Surveyor General inspected the party in recess. The Superintendent, Eastern Circle inspected the party in the field and recess.

TABLE 1 .
OUT-TURNS OF PLANE-TABLING 192]-22.

stale.	Class of surves.	Circle.	Party.	Locality.	Out-tura, t quaremiles.		Average number offixinge per squture fixinge per equare mile.	
					Total.	Averuge per man per month of 4 . working days.	$\left\lvert\, \begin{gathered} \text { In situ (by } \\ \text { resectiou). } \end{gathered}\right.$	Plene-table traverse.
$\frac{1}{2}$-inch	Original survey	N	No. 2	Central India	$\left\{\begin{array}{l}283 \\ 209\end{array}\right.$	$49.6(a)$ 56.4 ($6 \cdot 4$ $5 \cdot 6$	$0 \cdot 1$ $0 \cdot 1$
		S S	No. 5 No. 5	Central India Gwalior	1,526 120	$\} 42 \cdot 9$	$6 \cdot 1$	$0 \cdot 7$
		S	No. 6	Hyderābād (Deccan)	6,270	$62 \cdot 8$	$5 \cdot 7$	$0 \cdot 1$
		E	No. 10	Upper Burma	3.168	63.4	$0 \cdot 3$	$3 \cdot 2$
		E	No 12	A esam	883	$35 \cdot 8$	$0 \cdot 9$	$9 \cdot 9$
f-inch	Supplementary Survey	S	No. 6	Hyderābād (Decenn)	365	\ldots
l-inch	Original Survey	N	No. 4	Nepāl	29.4	$40 \cdot 5$	$9 \cdot 0$	6.3
		s	No. 5	Central India	652	$\} 20 \cdot 7$	5•3	$4 \cdot 4$
		s	No 5	Central Prorinces	1.47t			
		s	No. 7	Madrns	3,668	$\}: 10 \cdot 5$	70	$0 \cdot 1$
		S	No. 7	Hyderābād (Deccau)	142			
		S	No. 8	Madras	970	$25 \cdot 8$	7•3	$0 \cdot 3$
		E	No. 9	Bengal $\quad\left\{\begin{array}{l}(a) \\ (b)\end{array}\right.$	401 61	$\begin{aligned} & 18.8 \\ & 10.4 \end{aligned}$	$\begin{array}{r} 3.4 \\ 12 \cdot 2 \end{array}$	$\begin{aligned} & 19 \cdot 5 \\ & 18 \cdot 8 \end{aligned}$
		F	No. 11	Lower Burma	1,940	33.4	$1 \cdot 1$	$4 \cdot 1$
		E	No. 12	Assam	1,182	$15 \cdot 0$	2.8	$16 \cdot 5$
l-inch	Re-survey	N	No 2	Central Iudia, Kājputāın nud United Provinces	$\left\{\begin{array}{r}604 \\ 1,821\end{array}\right.$	26.2(a)	13.9 14.8	$5 \cdot 1$ $7 \cdot 9$
1-inch	Revision Survey	N	No. 2	Central India arid United Provinces	$\left\{\begin{array}{l} 1,523 \\ 1,171 \end{array}\right.$	$\left\|\begin{array}{l} 34 \cdot 0(a) \\ 26 \cdot 4(b) \end{array}\right\|$	$\begin{aligned} & 9 \cdot 0 \\ & 7 \cdot 9 \end{aligned}$	$\begin{aligned} & 6 \cdot 2 \\ & 5 \cdot 8 \end{aligned}$
		N	No. 4	United Provinces \& Bihār and Orisan	3.691	$31 \cdot 8$	6-5	$5 \cdot 3$
		K	No. 8	Bombay	3,386	28.6	$6 \cdot 9$	0.4
l.inch	Supplem-ntary Survey	N	No. ${ }^{\text {- }}$	Central Provinces	615	1:17	$1 \cdot 5$	$2 \cdot 8$
		\checkmark	No. 7	Madran	1,919	$87 \cdot 7$	$1 \cdot 5$	$0 \cdot 3$
		s	No. 8	Madras	199	22.0	$6 \cdot 0$	1.0
		E	No. 9	$\text { Bihār and Orissal } \begin{aligned} & (a) \\ & (b) \end{aligned}$	$\begin{aligned} & 1,844 \\ & 1,423 \end{aligned}$	$\begin{aligned} & 24 \cdot 9 \\ & 15 \cdot 1 \end{aligned}$	$\begin{aligned} & 8 \cdot 1) \\ & 9 \cdot 2 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 8.8 \end{aligned}$
l-inch	$\begin{array}{\|l\|} \hline \text { Original Forest } \\ \text { Survey } \end{array}$	S	No. 5	Central India	278	20.3	$8 \cdot 5$	$4 \cdot 9$

(a) By trained survegors.
(b) By pnpils.

TABLE I.-Concluded.
OUT-TURNS OF PLANE-TABLING 1921-22.—Concluded.

scale.	Class of survey.	Circle,	Parts.	Locality.	Out-turn, squaremiles.		Average number offxings jer square mile.	
					Total.	A erage per min per month of 24 working duys. duy.	In sifu (loy resection).	$\begin{aligned} & \text { Plane-table } \\ & \text { traverge. } \end{aligned}$
2-inch	Original Survey	N	No. 3	Onited Provinces and Nepāl	1,969	$20 \cdot 4$	6•2	...
2-inch	Oriцinal Forest Survey	S	No. 7	Madras	333	$8 \cdot 4$	$25 \cdot 4$	8.2
		E	No. 9	Bihār and Orissa (a)	($\begin{array}{r}39 \\ 3\end{array}$	9.0 2.9	$\begin{aligned} & 10 \cdot 8 \\ & 48 \cdot 7 \end{aligned}$	$\begin{array}{r} 92 \cdot 0 \\ 72 \cdot 3 \end{array}$
		H	No. 11	Lower Burma	170	$4 \cdot 9$	$2 \cdot 6$	$64 \cdot 1$
		E	No. 12	Assam	134	$5 \cdot 7$...	$41 \cdot 9$
		E	No. 21	Upper Burina (c)	25	$3 \cdot 3$...	$33 \cdot 3$
		E	No. 21	Lower Burina	147	$2 \cdot 0$...	174.5
4-inch	Original Survey	E	No. 21	Upper Burma (d)	90	0.8	...	$251 \cdot 2$
4-inch	Original Forest Survey	S	No. 5	Central Provinces	14	$2 \cdot 9$	$25 \cdot 3$	$69 \cdot 3$
6-inch	$\begin{aligned} & \text { Origingal } \\ & \text { Survey } \end{aligned}$	N	No. 20	Deolāli	$40 \cdot 21$	1.9	Fixingsper onurars quile. 52.9 52	Cbaine per Bquar 133. 133
16-inci	Original Survey	N	No. 20	Bangalore	$\begin{gathered} \text { Acres. } \\ 617 \cdot 00 \end{gathered}$	Acres. $361 \cdot 2$	$\left\|\begin{array}{c} \text { Fixinge } \\ \text { puracre. } \\ 0.3 \end{array}\right\|$	$\left.\begin{array}{\|c\|c\|} \text { Chaing } \\ \text { arerer } \\ 2 & 0 \end{array} \right\rvert\,$
16-inch	Revision Survey	N	No. 20	Deolāli	1,447.00	$165 \cdot 4$	$0 \cdot 3$	$5 \cdot 2$
		N	No. 20	Bangalore	$410 \cdot 00$	$894 \cdot 5$	$1 \cdot 0$	$3 \cdot 1$
		N	No. 20	Deolāli	$976 \cdot 00$	114.3	$0 \cdot 3$	4.5
		N	No. 20	Alımadābād	2,075 -00	$398 \cdot 3$	0•2	$3 \cdot 1$
6b-inch	Original Survey	N	No. 20	Deolāli	48-36	$52 \cdot 6$	\ldots	$12 \cdot 5$
61-inch	Reviaion survey	N	No 20	Jeolāli	$33 \cdot 00$	$29 \cdot 3$	\cdots	$19 \cdot 3$
		N	No. 20	Ahmadābād	$25 \cdot 00$	49.9	...	$12 \cdot 3$
$\left\|\begin{array}{c} \text { One inch } \\ \text { to } 50 \text { fcet } \end{array}\right\|$	Original survey	N	No. 20	Bangalore	65-63	$15 \cdot 7$	\cdots	14.7

TABLE II．

		：		8	$\stackrel{0}{0}$	$\stackrel{\ominus}{0}$	\vdots	8
		：	！	$\underset{\sim}{\infty}$	$\dot{0}$	$\stackrel{+}{i}$		is
	 	\vdots	：	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{\pi}{10}$	$\begin{aligned} & \text { M } \\ & \text { Nex } \end{aligned}$	\vdots	N
	－Вuturuqe sotum xovut	！	\vdots	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \dot{1} \\ & i 0 \end{aligned}$	$\begin{aligned} & + \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & i 0 \\ & i n \\ & i \end{aligned}$	：	$\stackrel{\infty}{\sim}$
		\vdots	：		$\begin{aligned} & \vec{\phi} \\ & \dot{-} \end{aligned}$		\vdots	－
		¢	＋ 0 0	\vdots	！		$\stackrel{8}{\circ}$	\vdots
		$\stackrel{18}{8}$	N	：	！	！	Ξ	\vdots
		$\stackrel{\square}{0}$	＋	\vdots	；	！	$\stackrel{\square}{-}$	；
		is	$\begin{aligned} & \because \\ & \stackrel{\square}{=} \end{aligned}$	：	；	．	$\begin{aligned} & \infty \\ & \dot{e} \\ & \hline \end{aligned}$	\vdots
		¢	$\stackrel{\oplus}{\sim}$	\vdots	：	：	$\stackrel{+}{+}$	\vdots
	sal！maxibe jo 120 umn	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \dot{\circ} \\ & \dot{\sim} \end{aligned}$	\vdots	！	；	F	！
		$\vec{\infty}$	$\begin{aligned} & \dot{0} \\ & \dot{-1} \end{aligned}$		\vdots	！	$\stackrel{\circ}{\dot{\circ}}$	！
	＇saytum pamba mivas	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & \text { B } \\ & 0 \\ & 0 \end{aligned}$	：	！	：	$\stackrel{\infty}{\circ}$	\vdots
		4	ω	；	：	\vdots	${ }^{\circ}$	：
	方				United Provinces			
		\sim	9	0	Ol	Ol	＋	＊
	苞	$\dot{\circ}$	\dot{z}	\dot{z}	$\dot{8}$	\dot{Z}	$\underset{7}{7}$	－
		z	云	z	乙	z	Z	乙
		\cdot	－	－	－	－	－	
				芯	$\stackrel{+}{+}$	㫛		\％ ¢ en E
	\％		$\begin{gathered} \text { 品 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 䓃 } \\ & \text { • } \\ & \text { ה } \end{aligned}$	$\begin{aligned} & \text { 邑 } \\ & \text { 足 } \\ & \text { en } \end{aligned}$	－	－	－

TABLE II—Continued.
DETAILS OF LEVELLING AND TRAVERSING 1921-22.

TABLE II.-Concluded.
DETAILS OF TRIANGULATION AND TRAVERSING 1921-22.

[^1]TABLE III.

TABLE II.-Concluded.
DETAILS OF TRIANGULATION AND TRAVERSING 1921-22.

[^2]table iil.

TABLE III.-(Continuer).
COST-RATES OF SURVEY 1921-22.-(Continued).

TABLE III.-(Concluded)
COST-RATES OF SURVEY 1921-22.

PART II.-GEODETIC AND SCIENTIFIC OPERATIONS.

TRIGONOMETRICAL SURVEY. ASTRONOMICAL LATITUDES.

During the year advantage was taken of the fact of Bt.-Major K. Mason, M.C., R.E.,

Pengonnet of No. 13 Patty. Class I Officer.
Captain H.E. Roome, M. C., M.E., in charge.
Lover Subordinate Service.
1 Cicrk.
1 Compater. of defects in the instrument used, with the restit that the values of latitude then obtained have always been looked upon with some suspicion. The computation of this work is in hand but the results are not yet available.

The personnel of the party were employed at the Head-quarter offices of the Trigonometrical Survey.

No. 14 PAR'TY-PENDULUM, No. 15 PARTY-TRIANGULATION and

No field operations were carried out by these three parties, the personnel being employed at the Hear-quarter offices of the Trigonometrical Survey.

TIDAL OPERATIONS.
By Majoll C. M. Thompson, I. A.
During the year under report the registrations of the tidal curves by means of automatic tide-gauges were continued at the following ports:-

Aden, Karachi, Bombay (Apollo Bandar), Bombay (Prince's Dock), Madras, Kidderpore, Rangoon, Monlmein and Port Blair.

These operations were conducted under the direction of this department, the immediate control of all the obsecvatories being entrusted to the local officers of the ports concerned.

In addition to the above work, the predictions of the heights and times of high and lowwater for the rear $l a x l$ at the following ports :Bhannagar, Chittagrong and Akyab were compared against the actual observations of the heights and this officer to carry out Talcott observations for latitude at four stations of the Kashmir triangulation, namely :-Gogipatri, Poshkar, Zebanwan and Reban. The observations at the two former were of the nature of revision, the earlier observations at those two stations in 1860 having given

No. 19 PARTY—BASE LINE OPERATIONS.

$$
\text { Pehbonnel of No. } 16 \text { Jatiy. }
$$

Class I Officers.

Mnjor C. M. Thompson, I. A. in charge from 10th Junc 1922.
Coptain K. A. Glemuie, D.S O., R. E., in charge from loth Mas to Jeth dunc 1922.
class II Opficers.

Mr. Ilanumin I'rasat, It. S., io charge toll 9th Mny 1922.
. D). II. L.uxa.
Somer Suhordinate Ses vice.
21 Computera. cte. against the actual observations of the heights and being in Kashmir, on other survey work, to get times of high and low-water as supplied by the Port officers of the above ports. These radings on tide-poles were taken during daylight throughout the year. The object of the alove comparisons was to see whether the predictions, which were based on tidal observations taken many years ago, still maintained the required derree of accuracy.

TIDAL OBSERVATIONS AT BASRAII.
Hourly readings thronghont the day and night of the height of the water against an ordinary wooden tide-pole were continuod at Basrah. Copies of these readings were supplied to this department weekl! by the l)irector, Inland Water Transport, Mesopotamia. The realings for the var commoneing lst Janary l921, were reduced by the method of harmonic analysis, and the constants thus deduced, were used in the computation of data for the lasrah tide-tables for 1923 , which were prepared with the aid of the tide-predicting machine recently eweted in the oflice of the Superintendent of the 'Trigonometrical Survey, Dehra loun.

The tide-tables for Rasiah for 1003 were published on the 12 th June 1992, and have been despatched to the oflicials requiring them.

LIST OF TIDAL STMTIONS.

The following is a complete list of the ports at which tidal registrations have been carried out from the commencement of the fidal operations in 1874 up to the present time. The stations at which automatic tide-ganges are still working are shown in italics: the others are minor stations which were closed after a few years on the completion of the requisite registrations.

List of Tidal stations.

Inspection of Tida. Observatomies.

Under the orders of the Superintendent of the Trigonometrical Survey, with a view to economy in travelling expenses, Dr. J. de Graaff Hunter, M.A., Sc. D., F. Inst. P., Officer in charge of the Computing Office, inspected the tidal observatories at Madras and Aden; and Mr. E.C.J. Bond, V. D., Officer in charge of the Maguetic Party, inspected the tidal observatories at Bombay (Apollo Bandar), Bombay (Prince's Dock) and Karāchi.

Mr. D.H. Luxa, the tidal-assistant, inspected the tidal observatories at Kidderpore, Kangoon, Monlmein aud Port Blair. The inspection of each observatory was carefully earried out, special attention being paid to the following points :-
(a) Checking the working zero of the tide-gauge and comparing the same with the true zero.
(b) Testing the stability of the tide-gauge, by check-levelling between its bed plate and the bench-mark of reference. This was lone in every case except at Madras.
(c) 'Testing the zero of the graduated staff with reference to the zero of the tide-gauge. This was done in every case except at Madras.
(1) The cleaning and overhauling of all instruments thoroughly and getting them in perfect working order.
(c) The final adjustment of the tide-gauge and working zero, after cleaning the whole apparatus.
(f) Examination and cleaning of the observatory well and the inlet hole, and securing free communication between the sea and the well.
(g) General examination of the observatory cabin with the object of getting any repairs rlone, if necessary.
Remarks regaiding the Wolking of each Timal Obseifatont.
Aden.-This observatory was inspected in March 1922, and appeared to have worked well since the last inspection and to be in good condition. There were in all 6 breaks in the registration of the tidal curves during the period under review. These stoppages occurred as follow: -

On the 7 thi Angust and 6th November 1921. These varied from $2 t$ to 3 hours respectively and were due to the choking of the inlet hole. To guard against this in future, the observatory clerk has been instructed to have the inlet hole examined, and cleaned, if necessary, every month. The other stoppages occurred on the 24 th and 28 th November and the 24 th December 192 l, and were due to the driving elock having stoppecl. The remaining stoppage on the + th $A_{\text {pril }} 1921$ was due to the pencil not marking.

Kurichli.—The observatory was inspected in March 1922. The tide-gange was found to be working quite satisfactorily. There were two interruptions during the past year owing to the communication hole in the eylinder being blocked with mud. A diver was employed on the $14 t h$ January and again on the 15 th and $16 t_{h}$ March 1922, to remove the mud which had accumulated round the outside of the cylinder.

Bombay (Apollo Baudar). -The inspection of this observatory was carried out during Frbruary 1822. The tide-gange was found to be working satisfaclorily and there were no breaks in the registration of the tidal curves.

Bumbay (Prince's Dock).-This observatory was inspected in February 1912. The tile-gauge clock was compared and found to be correct. 'The tide-gauge was clean and appeared to be working well. There were six intercuptions in the registration of the tidal curves since this observatory was last inspected. These interruptions were duc to the pencil wire breaking, and in each case a new wire was fixed and the pencil adjusted.

During the inspection it was noticed that the holes in the copper band were far too large for the studs on the wheel, and this resulted in the band slipping by about $1 / 10$ th of an inch either in one direction or the other, during both rising and falling tides, and that in consequence of this play, the pencil registrations on the diagram are liable to an error of about 0.02 of a foot with reference to the zero of the gange.

Malras.-This tidal observatory was inspected during January and I'ebruary 1922. The tide-gange has worked quite satisfactorily since the last inspection in December $\mathbf{1} 920$, except for a break in the registration of the tillal curves from the 9th to the 11th July and again on the 14th July 1921, caused through the tide-gauge clock failing to drive the drum. No spirit-levelling was carried out at this inspection.

Kidderpore.-This observatory was inspected in November 19:1. The tide-gauge has worked very satisfactorily, not a single break in the tidal registration having occurred during the past year. The greatest error of the tide-gauge clock was found to have been $I^{m I} 1 l^{\prime}$ fast on the 10 th November 1921, when compared against the time-ball at Fort William, Calcutta.

The bottom of the cylinder was examined and found to contain a small quantity of mud, which was removed by a diver. The mud that had accumulated on the outside of the cylinder was removed twice during the year.

Rangoon.-This tidal observatory was inspected in December 19:1. The tide-gange was found to be working well.

During the inspection a diver was employed in removing the mud that had accumulated at the bottom of the cylinder, and in cleaning out the communicating hole between the cylinder and the river.

Since the last inspection of this observatory there were 9 breaka in the registration of the tidal curves varying from 1 to lif hours in duration. These were all due to the stoppare of the driving clock, except in one case, when the interruption was due to the chain and the band becoming entangled in the eylinder. A new tide-gange clock was sent out from Deha Din, and this was connected with the gange on the Ist August 192l. The new clock stopped on three occasions, but the stoppage in ench case was due to the bridge connecting the Observatory with the river bank being under repairs.

Monlmein.-This obselvatory was inspected in November 1921. Since the last inspection of the tide-gauge, the following interruptions in the registration of the tidal curves occurred :-

1. From $6 \mathrm{p} . \mathrm{m} .11$ th February to $7 \mathrm{a} . \mathrm{m}$. 12th February 1921, due to the pencil failing to register, the pencil having become worn.
2. From $\overline{5} \mathrm{p} . \mathrm{m} .30 \mathrm{~h}$ May to $12 \mathrm{a} . \mathrm{m} .31$ st May 192 l , due to the screw and nut of the float having become undone. This resulted in the band slipping off the stud-wheel and falling into the cylinder; the shock thus occasioned, snapped the chain on the pencil traveller.
3. From 12 a.m. 5th June to $10 \cdot 45 \mathrm{a} . \mathrm{m}$. Gth June 1921 , the band became kinked and eventually snajped, falling on to the Hoat inside the cylinder.
4. From la.m. till 7 a.m. on the loth September 1921 and from $11 \mathrm{p} . \mathrm{m}$. 2cth November to $7 \cdot 45 \mathrm{a} . \mathrm{m} .27 \mathrm{th}$ November 1921 , the pencil failed to register the tidal eurves owing to its having become worn.
5. Except for the above interruptions, the tide-gange has worked quite satisfaciorily during the past year. Thieves broke into the Observatory cabin on the night of the lst Miy 1923, and removed the brass slides from the sides and top of the tide-gange clock, fortunately, without causing any break in the registration of the tidal-cure.

Pom / B/air.-The inspection of this observatory was carried out in December [9?1. The cabin was foumd in a very clean, neat and tidy condition. The tide-gauge and the auxiliary instruments have all worked well and without a single intermption.

The only computation undertaken during the past year was in connection with the Port of Basrah, the hourly readings of water level supplied ly the Director, Inland Water Transport, Mesopotamia, for the rear 1921 , being reduced by the method of harmonic analysis. The tidal constants deduced therefrom are shown in the attached table. These give the anplitudet (R) and the epochs (5) at lbasrah. The values of (H) and (κ) are also giveh, and thesc are comected with (I) and (ζ) throunh the varions astronomical quantities involved in the positions of the sum and moon, in such a way, that if the tidal observations were consistent from year to year, (H) and (κ) would result in being the same for cach year's reductions.

The harmonic analysis of the tidal observations for the nine working ports, viz., Aden, Karãchi, Bombay (Apollo landar), Bombay (Prince's Dock), Madras. Kidderpore, langron, Moulmein and Port Blair, was discontinued this year, on the advice of Dr. Doodson, D.Sc., Thilal Inslitute, Luiversity of Liverpool, who considered that further continuance of the present melhorls of harmonic analysis would not, in view of the long periods during which they had already been applied, give a commensurate inerease in the precision of the derived tidal constants. Moreover Professor Horace Lamb, li.R.S., Manchester University, stated that no important gain would result from the prolonged application of harmonic analysis to the records of any port, when once a reasonable set of constants had been secured. It was for this reason that the reduction of the tidal observations of various French ports had been diseontinued.

It is hoped that it may be possible to take up intensive tidal research at selected points, in the near future.

Prepailation of Data.

The following data were prepared during the year under report:-
(a) Values of the tidal constants for the tide-tables for Basrah for 1923 and 1924.
(b) Actual heights and times of high and low-water during 1920 and 1921 at 12 stations. These include 9 stations at which regular tidal observations by self \downarrow registering tide-ganges were carried out, and three stations at which the times and heights of high and low-water readings were taken during day-light only.
(c) Comparisons of actual with predicted values for 1920 and 1921 , the errors being tabulated in such a manner as to be of use in improving the future predictions, if possible.
(d) In addition to the above, the values of the tidal constants for the 40 Indian ports, for the tide-tables for 1924 and 1925 , were prepared for use in the tide-predicting machine now at Dehria Dün.

> Eurofis is Piedictions.

The predicted times and heights for high and low-waters for the year 1921, as given in the tide-tables, have been compared with the actual values obtained from tidal observations at the nine stations now working, and at the three other stations where tidal registrations by self-registering tide-gauges were stopped, but at which the times and heights of high and low-waters were noted by a watch, and tide-pole readings during day-light. The ewors of the predictions thus determined, are tabulated in the 6 tables herewith appended.

No. 1.
Percentages and amounts of the errors in the predicted times of high-water
at the various tidal stations for the year 1921.

Stations.	Automatic or tide.pole observitions.	Number of comparisons bet ween nctual and predicted values.	Eirors of 5 minutes aud inder.	Errors over 5 minutes and under 15 minutes.	Errors over Lis minutes nind under 20 minutes.	Errors over 20 mainutes und under 30 minutes.	Errors oyer 50 mimites.
			Per cent	Per cent	Per ceut	Yer cent	Per cent
Aden ...	Anto.	700	35	47	s	6	4
Karảclic \quad..	"	705	35	42	11	9	3
Bhaunhgar * ...	I'P.	365	$6+$	36	0	0	0
Howloay $\left\{\begin{array}{l}\text { (Apollo Baudar) }\end{array}\right.$	Auto.	705	31	42	13	12	2
Dombay (Prince's Dock)	''	705	35	45	10	7	3
Madras $\quad .$.	'	701	24	37	10	17	12
Kidderpore ...	\because	705	31	4.2	11	11	3
Chlttagong ...	T. P.	305	13	48	14	13	7
Akyab ...	${ }^{\prime \prime}$	365	8 i	12	3	0	0
Rangoou ...	Auto,	700	32	47	11	9	1
Monlmein ...	\because	698	25	43	14	14	4
Port Illnir \quad..	"	706	45	44	0	4	1
Bratah ...	'I'I'.	705	7	16	6	15	56

No. 2 .
Percentages and amounts of the errors in the predicted times of low-water at the various tidal stations for the year 1921.

Btatione.	$\begin{gathered} \text { Automatio } \\ \text { or } \\ \text { tide.pole } \\ \text { observitions. } \end{gathered}$	Number of comparisons botween actual aud predicted values.	Errors of 5 minutes and under.	Errors over 5 minutes nnd under 15 minutes.	Errors aver 15 minutes and under 20 minutes.	Errors over 20 minutes and under 30 minutes.	Errore over 90 minutes,
			Per cent	Per cent	Per cent	Per cont	Per cent
Aden ...	Auto.	097	34	43	10	8	5
Karȧchi ...	"	705	31	34	11	14	6
Bhaunagar ...	I, P.	365	68	37	0	0	u
Bombey $\{$ (Apollo Bander)	Auto.	704	96	46	12	12	4
(Prince's Dock)	'	705	27	41	12	15	5
Madras ...	"	699	22	34	12	19	13
Kidderporu ...	$"$	704	33	41	12	10	4
Chitagong ...	'I. P.	365	14	30	21	20	9
Alyab ...	\because	365	79	19	\because	0	0
Rangoon ...	Auto.	700	99	415	12	18	1
Moulmein ...	'	690	20	30	14	18	18
Poit Blair $\quad .$.	"	705	14	4)	7	;	1
Basrnh ...	T. P.	705	8	14	7	12	59

No. 3.
Percentages and amounts of the errors in the predicted heights of high-vater at the various tichal stations.for the year 1921.

Etations.	$\left\{\begin{array}{c} \text { Automntic } \\ \text { or } \\ \text { tile-pole } \\ \text { onservitions } \end{array}\right.$	Number of comparisons between nctunl nud predictel ralues.	Mean range at springe ill fect.	Errors of 4 inches nud under.	Errors over 4 inches nand under 8 inche9.	Ertora over 8 inches unt under 12 incbes.	Firrors over 12 inches.
				Per cent	Per cent	Per cedt	Per cent
Aden ...	Auto.	700	$6 \cdot 7$	0	1	0	0
Karàbi	-	700	$9 \cdot 3$	[iH	37	\%	0
Hhannagar	'I.P.	365	31.4	61	3.1	3	$\underline{2}$
Domiar (Apollo Bandnr)	Auto.	705	$13 \cdot 9$	71	24	3	2
(Prince's Dack)	,.	703	$13 \cdot 1$	$4 \times$	27	16	0
Madrus	-	$7 \% 1$	3-5	H_{4}	1.	1	0
Kidderpore	,	703	$11 \cdot 7$	49	23	10	18
Cbittagong	'T.P.	36.5	13.3	40	24	19	17
Altrals	"	30	$8 \cdot 3$	67	30	3	0
Rangoon ...	Auto.	710	16.1	06	2 H	9	3
Monlmein $\quad .$.	"	698	12.7	38	27	19	16
Port Blair	*	700	06	91	9	0	0
Baerab ...	T. P.	705	$5 \cdot 2$	39	29	18	14

No. 4.
Percentages and amounts of the errors in the predicted heights of low-water at the various tidal stations for the year 1921.

Stations.	Automatic or tide-pole observatións.	Number of comparisons between netual and predicted values.	Mean range at springs in feet.	Errors of 4 inches nnd under.	Ertors over 4 inclues nad under 8 iuches.	Firtors oyer 8 inchen and under 12 inches.	Errors over 12 inches.
				Per cent	Yer cent	Per cent	Per cent
Aden $\quad .$.	Auto.	697	$6 \cdot 7$	98	2	0	0
Karüchi \quad..	"	705	$9 \cdot 3$	79	20	1	0
Bhaungar $\quad .$.	T.P.	365	31.4	55	39	4	2
(Apollo Bandar)	Aulo.	704	$13 \cdot 9$	73	23	4	0
$\text { Bombay }\left\{\begin{array}{l} \text { (Prince's Dock) } \end{array}\right.$	"	705	13.9	56	30	10	4
Madras -..	"	699	$3 \cdot 5$	93	C	1	0
Kidderpore ...	"	706	$11 \cdot 7$	49	23	15	13
Chitlagong ...	T.P.	365	$13 \cdot 3$	16	23	22	39
Aksnb $\quad \cdots$	"	365	$8 \cdot 3$	74	21	6	0
Radgoon ...	Auto.	700	16.4	42	32	15	11
Moulmein ...	"	696	$12 \cdot 7$	46	22	18	14
Port Blair ...	"	705	6.6	96	4	0	0
Basrah ...	'I'P.	705	$5 \cdot 2$	26	20	10	35

No. 5.
Table of average errors in the predicted times and heights of high and low-water at the several tidal stations for the year 1921.

Stationg.	Autnmalic or tide pole observations.	Menn range nt springs in teet.	Asernge Errors					
			of time in suinutes.		of licikht int terms of the minge.		of height in inches.	
Open Coast.			II. W.	L. W.	II. WV.	L. W.	1. W.	J. W.
Aden $\quad .$.	Auto.	C• 7	10	11	0.025	0.025	2	2
Karichi	"	$9 \cdot 3$	10	12	$0 \cdot 036$	$0 \cdot 027$	4	3
Bhaunagar	'T.P.	$31 \cdot 4$	5	5	$0 \cdot 013$	$0 \cdot 013$	5	\%
Bombay $\{$ (Apollo Bandar)	Auto.	13.9	11	12	0.018	0.018	3	3
(Princee Dock)	"	$13 \cdot 9$	10	13	0.036	$0 \cdot 030$	6	5
Madras	"	$3 \cdot 5$	10	16	$0 \cdot 071$	$0 \cdot 0.48$	3	2
Akrab	'T.P.	8.3	5	6	$0 \cdot 030$	0.030	3	3
Port Hair	Auto.	C. 6	8	8	0.025	$0 \cdot 025$	2	2
General Menn	...	\cdots	9	10	$0 \cdot 032$	$0 \cdot 027$	$\stackrel{+}{1}$	3
Riverain.								
Kidierpore	Anto.	$11 \cdot 7$	11	11	$0 \cdot 050$	$0 \cdot 043$	7	6
Chittrgong	T.P.	13.3	1.4	17	0.04.	$0 \cdot 075$	7	12
lanroon	Auto.	16.t	10	11	$0 \cdot 020$	0.030	4	6
Monlmein $\quad .$.	"	12.7	12	18	$0 \cdot 0.46$	0.016	7	7
Basraì $\quad . .$.	T.T.	$5 \cdot 2$	40	44	$0 \cdot 112$	$0 \cdot 160$	7	10
General Menn	'*	. ${ }^{\text {a }}$	17	20	0.054	0.071	6	8

No. 6.

Summary for 1921.

Nambers of stations.	Predictious tested by	Pereentage of Predictions, at hioil and low-water within					
		15 minutes of netmals.		8 inches of netuals.		one-tenth of mean rauge	
		High.	Low.	High.	Low.	ITigh.	Low.
6 Open coast	S.R. Titlengage	77	72	94	97	97	99
a ' ${ }^{\text {a }}$	Tide-pole	99	99	96	95	09	99
3 Riverain	S. H , Tite-gange	74	66	75	71	92	94.
2 "	Title-pole	13	36	66	42	78	[9

Comparisons of the Phedictions for the tear $19 \% 1$ with those fon the previolis year.

On comparing the tidal predictions at the nine working stations for the year 1921 against those for the year 1920, it was seen that the predictions of times for 1921 had improved at Aclen and slightly at Rangoon, and had deteriorated at Bombay (Apollo Bandar), Madras and slightly at Moulmein. The predictions of heights had improved at Karachi and at Kidderpore, and slightly at Rangoon, and had deteriorated slightly at Chittagong. The predictions of times and heights at all the other stations were practically of the same standard of accuracy as in 1920 .

The greatest differences between the actual and predicted heights of low-water for 1921 at the riverain ports were as follows :-

Kidlerpore $\ldots 2$ feet 6 inches on 11 th August 1921, actual being lower.
langoon ... 2 fect 3 inches on 8 th November 1921, actual being higher.
Moulmein $\quad \ldots 2$ feet 8 inches on 20th July 2921, actual being lower.

> Tine-T'ables.

The tide-tables for the year 102. for Basrah and the Indian ports were reecived from Englaud on the 2 Lith and 291 h September and 22nd November 1921, and were immediately despateled to the various Port anthorities and other oflicials.

The tide-tables for 1923 for l3astah and the Indian ports were prepared and published at lehea Iunn, and their despatch wili be completed by about the end of October 1922.

The amount realized by the sale of tile-tables during the year ending 30th September 1!122 was lis. 3,503/12/0.

> Tide-ficinfetinc; machine.

This machine was received from the National Physical Laboratory, Teddington, Englancl, iowards the end of September 1921, and was erected at Dehra Dün, after necessary repaiss had been caricel out. The predictions for the 1923 tide-tables were run off on the machine and completed by the middle of August lyin.

Procimame for sbason lgas-23.
Tielal ofervations during the coming field season will he eontinued at the nine obectrntroirs still working, of which that at Bombay (Yrince's lock), has been kept in operation be the lout authorities solel? for their own special purposes. Ilad they not wished to do so this ol sewatory would have been closed.

LEVELLING.

By Brevet-Majon K. Mason, M. C., R. E.

I. Compposition of Party etc.—The party was increased to 3 single and 4 double detachments.
l'ersonnel of No. 17 Padty.
Class I Officers.

Bt.-Mujor K. Mason, M. C., R. E., in charge, up to 27th March 1922, and from 1st September 1922. Major F. J. M. King, R. E., in charge from 28th March to $19 t 4$ Jnne 1922.
Captnin E. A. Glednie, D. S. O., R. E., in charge from 20th June to 319t Augutt 1922. Class II Officers.
Mr. G. J.S. Tne.
" O. N. l'uehong.
, R.B. Malbur, B. A.
" K. S. Gopalaclari, B. A.
, N.N. Chackerbntty, L.C.E.
Upper Subordinate Servioe.
Mr. K. K. Dass, B. A.
n S.C. Mukerjec.
" P. B. Toy.
, A. A.S. Matlab Ahmad.
" Abelal Majid.
Lower Subordinate Service.
11 Compaters.
2 liconders.
3 Clerks.

All but one double detachment took the field in the winter of 1921-22; while No. 2, working across the Pir Panjul range, did not commence work till April 1922.

Party head-quarters closed at Mussoorie on the 26th October 1921 when four of the detachments took the field. The recess season opened at Mussoorie on 18 th April 2922, the various detachmeuts, with the exception of No. 2, returning shortly afterwards.
II. Field detachments.-The field detachments were organized as follows :-

No. 1 A Deachment. Mr. N. N. Chuckerbutty.

No. 1 B Detachment. Mr. A.A.S. Matlub Ahnad.

No. 1 C Detachment. Mr. R. B. Mathur.

$$
\text { No. } 2 \text { Detachment. Mr. O. N. Pushong. }
$$

$\left.\begin{array}{l}\text { Md. Ishak Khan } \\ \text { Md. Faizul Hasan }\end{array}\right\}$ (2nd Levellers).
No. 3 Detachment. Mr. P.B. Roy.
Md. Jbrahim (2nd Leveller).

No. 4 Detachment. Mr. K. S. Gopalachari.
Mr. Abdul Majid (2nd Leveller).
No. 5 Detachment. Mr. S. C. Mukerjee.
Babu H. K. Kar (2nd Leveller).
ILI. Programme.-The three single detachments were engaged on the following lines for the new level net:-

$$
\begin{aligned}
& 1 \text { A Detachment. - Viramgām to Tatta-line } 104 . \\
& 1 \text { B Detachment.- Jacobābãd to Khānpur-part of line } 101 . \\
& \text { Khānpur to Jhang-line } 105 . \\
& \text { Surat to Dhülia-line } 113 .
\end{aligned}
$$

These lines are shown on the diagrams facing page 64 of Volume XV, Records of the Survey of India. Their adjustment cannot be taken up until they have been levelled in the reverse direction.

The line from Karāchi to Kotri-part of line 101-had to be omitted from the programme owing to urgent work required by local governments, and the line Viramgaim to 'ratta could not be completed.

No. 1 C Detachment also levelled the line from Rohri to Jam Sāhib for the Sukkur barrage scheme, in order to relieve No. 5 double detachment of some of its programme.

No. 2 Double Detachment, working on the old simultancous double levelling system, levelled from Waziräbād ria Siālkot to Jammu and thence by the Mahārāja's new motor road over the Pir Panjal range by the Banihal pass, connected with the line 56 E at Islámābāl in Kashmir, thus closing an important mountain circuit.

No. 3 Double Detachment, on the same system levelled for the Beugal Irrigation department and for the Nadian rivers scheme, besides closing threc circuits, viz.-
(1) Garhmuktesar to Aligarh.
(2) Jhānsi to Saugor.
(3) Jhārsugrā to Purūlia.

No. 4 Dorble Detachment worked in the Bombay Presidency.
Two lines, namely, (1) Nira Bridge to Bhătgar, and (2) Nira Bridge to Zalki were taken up for the Irrigation authorities, while the two lines Nändgaon-Ahmadnagar, and Sholäpur-Bijàpur were undertaken to close circuits or for revision purposes.

The live Gooty to Ongole had to be omitted from the programme owing to lack of time.

No. 5 Double Detachment was entirely employed on work for the Sukkur barrage project, the whole cost of the detachment being borne by the Bombay government.

1V. Ont-turn.-The total out-turn roughly consisted of-
(a) 1,452 miles of primary levelling in one direction for the new net.
(b) $\mathbf{8 1 2}$ miles of secondary levelling for closing and breaking circuits.
(c) 315 miles of secondary levelling for the Bengal government.
(d) 179 miles of secondary levelling for the Nira irrigation seheme, for the Bombay government.
(e) 889 miles of secondary levelling for the Sukkur barrage scheme, for the Bombay government.

In all, the heights of 78 primary bencl-marks and 2,80 secondary bench-marks were determined. These include triangulation stations.

The detail of this out-turn is shown in table I at the end of this repoit.
Two records were made during the season, Mr. Roy's out-turn of 743 miles being just beaten by Mr. Mukerji's of 749 miles. Mr. Roy's country was more difficult than Mr. Mukerji's, but the latter completed the greater out-tion in the shorter time.

Both levellers are to be congratulated on their work.
V. Bench-marks.-With the exception of those in the Sulkur barrage area, benchmarks were constructed after the usual Survey of India types. Every effort was however made to use rock-eut bench-marks and this enabled a saving to be made on the cost of construction. In the Sukkur area a type designed by the Bombay engineers was submitted to and approved by the Superintendent of the 'Trigonometrical Survey. This type, known as Musto's type, has been taken into use by the Survey of India.
VI. Cost.-It is interesting to record the cost of the secondary work done for local governments. The Bombay government paid for the levelling in the Sukkur barrage and Nira canal areas. The total estimate for the two works was Rs. 22,000 and the total cost, 1s. $22,260 / 4 / 2$, alditional work having been asked for in the Sukkur area, which was not estimated for. This alditional work cost Rs. 1,767, so that the work would have been completed within the estimate.

889 miles of levelling in the Sukkur area cost Rs. 16,619/0/2; 179 miles in the Nira area cost Rs. $5,641 / 4 / 0$. The rate of the first was therefore Rs. $19 / 0$ a mile, while that of the latter was as high as Rs. 30/0. A short programme, such as that in the Nira area, cannot be economical, when the cost of trausporting the detachment to the area for a short time bears a ligh proportion to the total cost.
VII. The New Level Net.--'The programme laid down for the new level net, -ride page 6.s, Vol. XV, Recorls of the Survey of India-could not be strictly adhered to. The line Karsehi to Kotri was not taken up and the line from Viramgaim to Tatta was not completed. The programme laid down for the net was 1,248 miles in one direction ; actually 1,452 miles were levelled. The reasons of this apparent inconsistency are
(a) that branch lines were longer than had been anticipated;
(b) the line Viramgam to Tatta was underestimated, and the country more difficult than had been expected;
(c) cros: lines were taken up for seismological purposes on this latter line. It was no fault of the detachment officer coneerned that his line was not completed.

In the coming field season almost the whole levelling for the new net, has had to give way to urgent work required ly local governments for irrigation purposes. The party las been very largely increased, but even so it has been found impossible to continue the net this year. It is to be hoped that in next season's work the net will have first cousideration, for in many cases the destruction of bench-marks on old lines has reached a very high proportion, and the reconstruction of a new net has become a matter of extreme urgency.

During the cold weather of 1921-22, a Committee, appointed at Dehra Dūn to consider the whole question of levelling in India, fully admitted the urgent necessity of completing the new net as early as possible and approved the programme as laid down in Records Volume XV.
VIII. Levelling publications.-The following levelling publications have passed through the press during the year under report:-
lst Edition of Levelling Pamphlet No. 62.
2nd Edition of Levelling Pamphlet No. 63.
Addenda slips to Levelling Pamphlets, Nos. 34, 35, 39, 40, 45, 53, 54.
Addenda slips to Addendum Pamphlet, No. 72.
IX. Miscellaneous.-
(a) Protcetion and Maintenance of Iriangulation Stations.-The section of the Trigonometrical Office dealing with the protection of triangulation stations has been supervised during the year by the Officer in charge No. 17 Party (Levelling). There is nothing of special interest to report.
(b) Triangulation Section, C'mmputing Officr.-This section has been under the control of the Officer in charge No. 17 larty during the year. Most of the pamphlets containing the primary data of Burma have been published during the year and a number of Himálayan and trans-frontier pamphlets have been revised. The whole triangulation of Sir Aurel Stein's three Central Asian journeys was examined by Major Mason and a note prepared for his memoir.
(c) Latitule obserrations.- Before the close of the field season Major Mason handed over charge to Major King and carried out latitude observations at four hill stations in Kashmir.
(d) Triamplation in Akora Practice Camp area.- Larly in September Major Mason carried out some minor triangulation for the military authorities in the Akora practice camp area.
X. Health.-Influenza affected No. 1 B Detachment in the field, one hihatasi dying of pneumonia in Multān hospital. One khatasi of No. 1 C Detachment contracted illness, and was sent to his home where he died. With these exceptions the health of the whole party was excellent.
XI. Summaries.-Below are given detailed summaries of the work of the various detachments. At the end will be found tables as follows:-

Trable I. Tabular ont-turn of work.
II. Check levelling.
III. Revision levelling.
IV. List of Great Trigonometrical Survey stations connected by spirit-levelling.
XII. No. 1 A Detachment.-Mr. N.N. Chuckerbutly, L.C.E., in charge. The line Viramgam to Tatta (No. 104) is composed of the following old lines:-
(a) No. 49 (Viramgàm to Rājkot).
(b) No. 48 (Rajkot to Jorya).
(c) No. 47 (Jorya to Shikārpur, Cuteh).
(d) No. 46 (Shilīāpur, Cutch to Navānār).
(c) No. 44 (Navānãr to Sujawal/.
(f) No. 45 (Sujā wal to Tatta).
Of the above, (f) and a portion of (e) were not levelled.
The total out-turn amounted to approximately 350 miles in the course of which 18 primary and 271 secondary bench-marks were connected; branch lines were run to ${ }^{6}$ primary and 4 secondary G.T. stations; and the heights of selected bench-marks at Blūj and 20 miles both north and south of this place were determined. These latter have been fixed for checklevel work in the event of future earthguakes in this area, and were selected in agreement with the Geological Survey of India.

The levels were run along railway lines and cart tracks, the Rann of Cutch being crossed on route. The greater part of the country was gently undulating. Zeiss level No. 16298, staves Nos. 16 A and 1 , and standard steel tape No. 5 were used.

This is the first time the large Zeiss instrument has been used in the Survey of India, and it has been found highly satisfactory.
XIII. No. 1 B Dctachment.-Mr. A.A. S. Matlub Ahmad, in charge.
(a) Jacobábãd to Kliānpur-part of line 101.
(b) Khänpur to Jhang-line 105.
(c) Surat to Dhūlia-line 113 .

The above three lines were completed in the forward direction during the season.

A small portion of (a) and (b), from Khanpur to Bahãwalpur was entirely new, the remainder being mainly revision work over old lines, many of the bench-marks on which had been lost. Five principal stations of triangulation were connected.

The country traversed was mostly flat and sandy, and no especial difficulties were encountered. 'The Indus, Sutlej and Rāvi and minor rivers were crossed by bridges, no 'shots' exceeding 7 chains in length. Binocular level No. 2698, staves No. 20 A and B , and standard steel tape No. 3 were used.
XII. No. 1 C Detrehment.-Mr. R.B. Mathnr, B.A., in charge.
(a) Khänpur to Märwà Päli-line 10:.
(b) Rohri to Jām Sāhib.

Of the above (a) was levelled in the forward direction for the new net; (b) was levelled for the sukkur barrage project.

A portion of line (1), from Lūni Junction to Marwarr Pāli is a revision of the old line 57 A; some old bench-marks were found intact and were re-connected but many had been lost or destroyed. The closing error on published values was approximately one foot in 371 miles.

Provisional values of the line Rohri to Jam Sahib have already been supplied to the Sukkur barrage engineers, but final values must arwait the reverse levelling to Rohri.

The line from Khānpur to Märwà Pàli crosses the heart of the Rājputāna desert and crosses the Bahawalpur, Jaisalmer, and Jodhpur States. The country is a labyrinth of sand dunes aud ridges for about 100 miles from K hanpur. The numerous dunes render levelling operations laborious and dificult. Vegetation and water are scarce and the whole tract is sparsely populated. l'rom Khānpur the gronnd rises gently but steadily to about 40 miles beyond Jaisalmer, whence it slopes downwards to the Jodhpur-Bikaner railivay.

Round Jaisalmer the ground is harder and less sandy, outcrops of rock being met with.
Zeiss level No. 16313, staves Nos. 1, 01, and standard steel tape No. 7 were used for the work.

After the completion of the lines (a) and (b) whole of the staff with the equipment was translerred to No. 2 Detachment, Mr. Mathur availing himself of average pay leave.
XV. No. 2 Detachment.-Mr. O.N. Pushong, in clarge.
$\left.\begin{array}{l}\text { Muhd. Ishak Khan } \\ \text { Muhd. Faiz-nl-Hasau }\end{array}\right\}$ Second levellers.
Wazīrābād to Islīmābād, Kashmīr, via Siālkot and Jammu.
This line of levels was taken up to close the Kashmir circuit, the line from Rawalpindi via the Jhelum valley having been levelled in the years 1911 \& 1913. The country from Wazirābād to Jammu was fairly level but thercafter following the Mahñraja's new motor road, the line crossed several ridges, including the Pir Panjäl range by the Banihal pass, 9,268 feet.

Mr. Pushong on his own initiative surveyed this road on the 1 -inch scale, as it had not been constructed during the recent modern l-inch surveys.

Mr. Pushong took the opportunity of training both his recorders as second levellers, and the difference between the lst and ind leveller was satisfactorily low throughout. The closing error in Kashmir was only 3 inches in $19: 3$ miles.

The probable accidental error per mile according to the formula

$$
\text { P.E. }=0.67 .15 \sqrt{\frac{\sum d^{3}}{4 M}} \text { is } \pm 0.0035 \text { foot }
$$

The new large Zeiss levels, Nos. 1 (3313 and $34 \$ 8$, staves Nos. 1, 01, 17 A and 17 B, and standard steel tapes Nos. 7 and 2 were used throughout the work. The work forms a check on the statement made on page 66 of the Records Volume $X V$ that the spirit-levelled height of Reban H. S. is \mathbf{a} feet less than the triangulated height.
XVI. No. 3 Levelling Detachment.-Mr. P. A. Roy, in charge.
(a) Garhmuktesar to Alīgarh,
(b) Jhānsi to Saugor.
(c) Jlıārsugrā to Purūlia.
(d) Calcutta to Chuãdānga.
(e) Jessore to Bārāsat.
(f) Three branch lines to Barharwā, Dhuliān and Jangipur.

The total out-turn of this detachment was 743 miles, which was very satisfactory, and which would have been a record for any detachment in any season, had it not been beaten last year by No. 5 Detachment.

Lines (a), (b), (c), were undertaken to close circuits; (d) and (c) for the Bengal Irrigation department; and the three branch lines (f), which had to be omitted from the
previous season's work, as the bench-marks were not then ready, were undertaken for the Nadiä rivers sclieme.

The field season was prolonged, and care had to be exercised to select suitable periods for levelling the varions tracts.

The country was generally flat throughout; from Husainabad to Khulnis a very large number of rivers, thails, and watercourses had to be crossed, and much of the country was liable to inundation.

The Beturi, at Jhararghāt was crossed by direct levelling ; its width was 97 chains, and its bed was stulded with ruek islands. The instrument was set up on selected islands; no 'shot' exceeded 11 chains in length and the two levellers obtained identical results

The Jammū, near Husainābad, 255 chains wide, was crossed by the target method. 4.7 sets of observations were taken, and the difference of levels as obtained by first and second levellers was -0.792 and -0.709 foot respectively.

The Kabadak, at Baraclal, was crossed by the target method. The width here was 1430 chains and the difference of levels by the two levellers was 2.376 and 2.367 feet respectively.

The Sibsi, at Garuikhali, was also crossed by the same method, where its width was 35.90 chains. The two results with 18 sets of observations were $1 \cdot 610$ and $1 \cdot 612$ feet.

Throughout the work the differences between the two levellers were satisfactory.
The probable errors of Mr. Roy's work according to the formula 0.6745 $\frac{\overline{\Sigma \mathrm{d}^{2}}}{4 \mathrm{M}}$ vary between ± 0.0035 and $\pm 0 \cdot 0037$ foot for the whole.

Zeiss level No. 3342 , binocular level No. 672t, staves Nos. D, D1, 22 A, 23 A, and standard steel tape No. 4 were used by the detachment.
XVII. No. 4 Levclling Detachment.-Mr. K. S. Gopalachari, B.A., in charge.

Mr. Abdul Majid, 2nd leveller.
(a) Nändgaon-Ahmadnagar.
(b) Nīra bridge-Bhātgar.
(c) Nira bridge-Zalki.
(d) Sholippur- Bijapur.

The total out-turn was 360 miles.
As regards the line Nandgaon to Ahmadnagar. It was originally intended to level from Manmãd to Alımadnagar, but owing to loss of bench-marks at the former place it was found impossible to check-level to the embedded mark here, and an extension had to be made to Nảndgaon. The work was therefore delayed at the commencement. Almost all of the old bench-marks on this line were lost or destroyed. This line was undertaken to close a circuit with the three lines (1) Kalyān-Nāndgaon, (2) Kalyān-Kedgaon, and (3) Poona-Ahmadnagar. The value of the Ahmadnagar Standard, now derived from Nindgaon gives a discrepancy of 0.8 foot compared with its value derived from Poona. Cheek-levelling at both the Nendgaon cmbedded B.M. and the Ahmadnagar Standard was satisfactory, but the embedded B.M. at Ahmadnagar shows a sinkage of $0 \cdot 110$ foot.

In view of the discrepancy of 0.8 foot at Alomadnagar it has been decided to postpone the publication of the results of this line pending the levelling from Ahmadnagar to Dloond, which will be taken up during the season 1922-23, and which should disclose whether the error lies in the Nandgaon or Poona sections of the circuit.

Lines (b) and (c), undertaken for the Nira right bank canal project, and the line from Sholāpur to Bijāpur call for no special remark. In both eases a very large proportion of old bench-marks were not found and have accordingly been considered destroyed.

With reference to the remark on page 67 of Volume IX, Records of the Survey of India, 1914-15, the revision of the line Sholäpur-Bijapur confirms the old value of the bench-mark as derived from Sholapur, thus throwing the error of +0.172 foot on the Bijupur-Bagalkot, which therefore should be revised at an early date.

The probable errors according to the formula $=0.6745 \mathrm{~V} \frac{\overline{\Sigma d^{2}}}{4 \mathrm{M}}$ are as follows
(a) observations held in abeyance.
(b) +0.0033 foot.
(c) ± 0.0046 "
(d) ± 0.0037 "

Binooular levels Nos. 6727 and 6728 , staves Nos. $19 \mathrm{~A}, 19 \mathrm{~B}, \mathrm{E}_{1}$ and E_{8} and standard steel tape No. 8 were used,
XVIII. No. 5 Detachment.-Mr. S. C. Mukerjee, in charge.

Bab" $H . K . K a r$, 2nd leveller.
This detachment worked in the Sukkur barrage area throughont the tield season. The work consisted of a network of lines of varying lengths, on both sides of the Indue from Sukkur southwards. The ont-turn of 7.49 miles constitutes a record for any one detachment in any season's levelling.

The country generally was lat except for a few low sandhills, and thronghout the work the difference between levellers was satisfactorily low. The mean probable error of the whole work lay between the limits ± 0.0026 and ± 0.0033 foot, and is well below the mean for the whole of India.

The work was expeditionsly and efliciently carried out by Mr. Mukerjee, who was given every assistance by the engineer in charge of the Sukkur barrage scheme.
TABLE I.-Tubular statement of out-turn of work, seus:n 1921-22.

TABI，E I．－Tabular statement of out－turn of work，season 1921－22．－（Continued）．

	mernsy		
$\left\|\frac{3}{2}\right\|$		：$\vdots \vdots$	$\vdots \vdots$
		－ $4 \quad \vdots \quad \vdots$	$\vdots \quad \vdots \quad \vdots \quad \vdots$
		¢	：\quad ！
		$\vdots \quad \vdots$	\vdots
		웅 8 듕 율 잉 9	\cong ส \％\％
			\cdots－${ }^{-1}$
		$\infty \quad \vdots \quad \vdots \quad \vdots$	：
		$\vdots \quad \vdots$	：：
	$\text { роррятаия } \frac{\frac{2}{\partial}}{\partial \mid}$	$\cdots \cdots 9$－	－＋の＋
		い ！¢－¢	
		：－！＊ 9	：；：
		！\vdots	$\vdots \quad \vdots$
	边	$\vdots \quad \vdots \quad \vdots$	$\vdots \vdots$
		－＊！－！！	\rightarrow ！
		$\vdots 0$ ¢ $\quad \vdots \quad \vdots \quad \vdots$	！：！＊
		：－\quad ：	：\quad ：
		串 莒茄哭莒号㐭	
		$\vdots \quad \vdots \quad \vdots \quad \vdots \quad$ ！	：：
	3i		$\begin{array}{llll} 8 & \text { o } & 8 & 0 \\ 0 & \infty & 8 & \infty \\ 0 & 0 & 0 & A \end{array}$
			$\begin{array}{llll} \hline \infty & 8 & 8 & 8 \\ \vdots & 8 & 0 & 0 \\ 0 & - & 0 & 0 \end{array}$
	总 昌		
	$\frac{1}{3}$		

TABLE I.-Tabular statement of out-turn of work, season 1921-22.-(Concluded).

TABLE II.-Check-Levelling.
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the origiual levelling that were connected for chcok-levelling.				Obeerred height alove (+) or below (-) starting bench-mark as determined by			
$\begin{aligned} & \dot{4} \\ & \frac{8}{2} \\ & \frac{1}{\mathbf{l}} \end{aligned}$		Description.		Origimal levelling.		Check-levelling 1921-22.	
			Miles.	Feet.	Date.	Feet.	
(a) Line 104 (Firamgàm to Tatla) At Viramgäm.							
1	46 A	Embedded B.M. nt Viramgàm	0.0	$0 \cdot 000$	1875-76	$0 \cdot 000$	0.000
7	"	¢ at Hāsalpur 'T'S.	4.0	+43.279	"	$+48 \cdot 447$	$+0 \cdot 168$
4	"	Upper Anuge of Ry. culrert No. 2	1-9	$+2.600$	"	+ $2 \cdot 32 \pm$	$-0 \cdot 276$
3	"	" 3	$0 \cdot 8$	-1.646	"	- 1-398	+0.24s
2	"	"	$1 \cdot 0$	-2.090	"	- 2.151	-0.061
42	41 M	$\left." \quad \text { " } \quad \begin{array}{c} \text { No. } \\ (\text { old } 4 \\ \hline \end{array}\right)$	$0 \cdot 5$	$\cdots{ }^{-} 0 \cdot 466$	"	$-0 \cdot 166$	$+0 \cdot 300$
41	"	$\begin{array}{ll} & \\ & \text { No. } 7 \\ \text { (old } 6 \end{array}$	0 G	-0.862	"	$-1 \cdot 155$	-0.293
38	"	" \quad, $\begin{gathered}\text { No. 11 } \\ \text { (old 10) }\end{gathered}$	$2 \cdot 0$	$-7 \cdot 424$	"	- 7'460	$-0 \cdot 036$
37	,	$\begin{array}{r} \text { No. } 12 \\ \text { (old 11) } \end{array}$	$0 \cdot 7$	- 1.661	"	- 1.535	+0.126
35	"	Embedded B.M. at Jhund R.S.	0.8	-4.066	"	-4.054	+0.012
At Rajkot.							
75	41 J	Embedded B.M. at Rājlrot	$0 \cdot 0$	$0 \cdot 000$	$\begin{array}{\|c\|} 1875-76 \\ 1909-10 \end{array}$	$0 \cdot 000$	$0 \cdot 000$
43	"	G.T.S. O at Carnegy fountain B. M.	$0 \cdot 0$	+ 3.021	"	+ 3•006	$-0 \cdot 015$
74	"	" at bridge over Aji river. Rājlot	$0 \cdot 4$	$+3 \cdot 130$	1890.91	$+3 \cdot 123$	$-0 \cdot 007$
42	"	O at clock tower, Rājkot	$0 \cdot 3$	+11.493	1009.10	+11. 492	-0.001
76	"	G.T.S. Standard Hencl-mark at Rājlot 1908	0.2	$+7.568$	"	+ $7 \cdot 580$	+0.012
77	"	$\underset{18 \bar{t}}{\text { G. } \Delta \text { S. }} \text {, B. P. No. } 2$	0.3	-17.556	"	$-17 \cdot 062$	-0.006
78	"	B.M. near C. B. P. No. 9	0.3	- 6.054	" .	-6.058	-0.00.4
73	"	O.T.S. B. M. at Museum and Library	0.2	+ 9.818	1875-76	$+9.812$	-0.006
72	"	" at Telegraph office	$0 \cdot 1$	- 1.076	1909.10	-1.076	$0 \cdot 000$
40	"	, at Alfred high school	0.1	-0.011	18.5-76	-0.009	$+0.002$
71	"	O nt Mac Nagten Statue	0.5	$+10.920$	1909-10	$+10 \cdot 904$	-0.016
41	"	Q. T. S H. it Rājkumār college	$0 \cdot 0$	$+1.026$	1875.76	+ 1.018	-0.008

table II-Check-Levelling.-(Continued).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original lorelling that were connected for check-lerelling.				Observed height alove (+) or below (-) starting bench-mark na determined by			
		Description.		Orikinal le	relling.	Check-lerclling 1021-22.	
			Mriles.	Feet.	Date.	Feet.	
At Jorya.							
12	41 J	Embedded B.M. at Joryn	$0 \cdot 0$	$0 \cdot 000$	1874-75	$0 \cdot 000$	$0 \cdot 000$
13	"	B. M. at Whastam Kumaris well	1.7	+15.046	''	+15.014	-0.032
11	-	Embedded B M , at Samarthal	$3 \cdot 7$	-4.872	"	$-4 \cdot 944$	-0.072
*	'	B. M. at Kharar-ka-deval	$0 \cdot 4$	$+2 \cdot 818$	"	$+2 \cdot 796$	-0.052
At Nakhtaràna.							
37	41 E	Embedded B.M. at Nalshtarāna	$0 \cdot 0$	$0 \cdot 000$	1874.75	$0 \cdot 000$	$0 \cdot 000$
39	"	Q. M. at Trikamdās-ka-dehri	$3 \cdot 4$	$+72 \cdot 384$	"	+72.394	+0.010
(a_{1}) Parts of Liucs 101 and 105 (Jacobubbed to Jhang). At Jacobabōd.							
23	39 D	Staudard ${ }^{\text {G.T.S. }}$ Bench-mark	$0 \cdot 00$	$0 \cdot 000$	1909-10	$0 \cdot 000$	$0 \cdot 000$
24	"	Irou plug Ex. En. office	0.03	-1.420	"	-1.417	+0.003
21	"	G.T.S. B.OM. at Clock tower	$0 \cdot 56$	$+4 \cdot 160$	"	$+4 \cdot 130$	-0.030
22	"	$\begin{aligned} & \text { a.T.S. } \\ & \text { B.M. at Municipal office } \end{aligned}$	$0 \cdot 97$	- 3 478	"	- 3 495	$-0 \cdot 017$
19	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.in. at Platform of R. S. } \end{aligned}$	$1 \cdot 51$	$+2 \cdot 847$	"	+ $2 \cdot 885$	+0.038
18	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.n. at Railwaty Station } \end{aligned}$	$1 \cdot 56$	$-8 \cdot 135$	"	$-8 \cdot 140$	-0.005
20	"	G.T.s. B. O . at Lang. Slah's Takia	1-90	+ 6.686	"	$+6691$	+0.005

* Geod. No. 2 of Line $47 \wedge$.

TABLE II.-Check-Levelling.-(Continued).
Descrepancies between the old and new heights of bench-marks.

- Mark-stone shakes when train parges.

TABLE II-Check-Levelinga.-(Continued).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levellling that were connected for check levelliug.				Observed height above (+) or below (-) startiug bench-mark as determined by			
$\begin{aligned} & \dot{5} \\ & \text { 品 } \\ & \text { 号 } \end{aligned}$		Degcription.		Original	relling.	Check-levelling 1921.22.	
			Miles.	Feet.	Date.	Feet.	Feet
At Khänpur.							
19	39 L	O at bridge over Gajjanwăh	$0 \cdot 00$	$0 \cdot 000$	1909-10	$0 \cdot 000$	$0 \cdot 000$
18	"	${ }_{295}{ }^{\text {O224 }}$ at Khānpur Jn. R.S.	0.30	+4.604	"	+ 4553	-0.051.
17	"	G.T.B. ${ }_{H} \mathrm{M}$ at bridge No. 2 H.M.	$0 \cdot 60$	$-4 \cdot 822$	"	$-4 \cdot 807$	+0.015
15	"	S.B.M. at Khăupur	0.87	$-1 \cdot 780$	*	$-1 \cdot 765$	$+0.015$
16	"	G.T.S. O at bridge'over Hājīwāh B..s.	0.92	$+3 \cdot 685$	\cdot	+3.671	-0.014
At Jhang.							
74	+4. A	G.T.S. G.OM. at Jhang Maghiāua R. S	$0 \cdot 00$	$0 \cdot 000$	1910-11	$0 \cdot 000$	$0 \cdot 000$
72	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. } \\ & \text { B.9. } \end{aligned}$	$0 \cdot 17$	-. $9 \cdot 224$	"	- 9•250	-0.026
71	"	\qquad	$1 \cdot 25$	+1:398	"	+ 1.379	-0.025
99	"	G.T.S. B.M. O at pillar E of Jhang	$1 \cdot 85$	+6.214	\cdots	+ 6.247	+11033
70	"	G.T.S $\underset{\text { B. M. }}{\mathrm{O}}$ at Kachahri road	186	-61075	"	-0.088	$-0 \cdot 013$
(b) Line 113 (Surat to Dhïlia). At Surat.							
		Q T. s.					
70	46 C	$\text { S. } 11 . \mathrm{M} \text { ig nt surat }$	$0 \cdot 00$	$0 \cdot 000$	1909-10	$0 \cdot 000$	0.000
69	'	G. T. S. B. M at High school	$0 \cdot 17$	- 8.940	1875.78	-8.831	+0.009
cs	\cdots	$\begin{aligned} & \text { G. T. S. } \\ & \text { B. M. at Thaveri Iustínute } \end{aligned}$	0.26	$+5 \cdot 17.5$	"	$+5 \cdot 168$	-0.0.07
67	"	G.T. S. O at Female Haspital Is. M.	$0 \cdot 52$	+ 1.429	"	+ 1 429	$0 \cdot 000$
66	"	G. T. S. O nt Reservoir	$0 \cdot 70$	$+4 \cdot 760$	"	$+4.748$	-0.012
46	"	$\begin{aligned} & \text { G. T. S. } \\ & \text { B. M. at Clock Tower } \end{aligned}$	$1 \cdot 16$	$-5 \cdot 601$	'	-5.598	$+0.003$
6\%	"	$\begin{gathered} \text { G. T. S. } \\ \text { O. M. Parak dispensary } \end{gathered}$	1-18	+ 1.738	"	+ 1.748	+0.010
45	"	$\begin{aligned} & \text { G. T. S. } \\ & \text { B. M. } \end{aligned}$	$1 \cdot 86$	- $0 \cdot 118$	1909-10	- 0.227	$-0 \cdot 109^{+}$
63	"	$\begin{aligned} & \text { G. T. B. } \\ & \text { B. M. } \end{aligned}$	$2 \cdot 03$	+16.631	1875-78	$+16 \cdot 623$	$-0 \cdot 008$
64	"		2-06	- 1.145	"	- 1.114	+ $0.031{ }^{\ddagger}$

* Letters defaced. † Mark sunk, \ddagger It rests loose on masonty nad is only θ inches below groand level,

Table II.-Check-Levelling.-(Continued).
Discrepancies between the old and new heights of bench-marks.

Table II.-Check-Levelling.-(Continued).
Discrepancies between the old and new heights of bench-marks.

Dench-marks of the original Levolling that were connected for check-levelling.				Observed height above (+) or below (-) stirting bench-mark as determined by			
		Deacription.		Original le	velliug.	Cleck-levelling 1921 .22.	
			Miles.	Feet.	Date.	Fect.	Fect.
At Jū̀n Sāhib.							
93	403	Stone pillar in Jām Sālinb dak bungalow	$0 \cdot 0$	$0 \cdot 000$	1921-22	$0 \cdot 000$	$0 \cdot 000$
94	"	B.M. on steps of dak bungalow	$0 \cdot 1$	+ 0.118	"	$+0.12 \mathrm{l}$	-0.003
95	"	Jron pipe $2 \frac{1}{2}$ miles \mathbf{S}. of Jäm Sāhib	2.5	$+0.119$	"	+ 0.074	-0.045
92	"	Bridge on Daur Road	$3 \cdot 1$	+ 3.239	"	$+3.277$	$+0.038$
*22	430	Stone monolith at Islāmābād	$0 \cdot 0$	$0 \cdot 000$...	$0 \cdot 000$	$0 \cdot 000$
*23	'	Tree	$0 \cdot 3$	+ 4.381	\ldots	$+4.399$	+0.018
*24.	,	Bungalow step	$0 \cdot 3$	$+6.945$..	$+6.901$	-0.044
*25	,	Rock	$0 \cdot 6$	$+168.885$.	$+168.877$	-0.008
*26	"	Rock	$1 \cdot 1$	$+495 \cdot 658$..	+ 495.656	-0.002
(f) Line 64 (Meerut to Lucknow). At Garhmuktesar.							
124	53 L	Embedded B.M. Garhmuktesar	$0 \cdot 0$	$0 \cdot 900$	1914-15	$0 \cdot 000$	$0 \cdot 000$
126	'	Culvert No. $\frac{3}{1}$	$0 \cdot 4$	$+1.690$,	+1.687	-0.003
127	"	Distant sigunal	$1 \cdot 0$	$+2.043$	"	$+2 \cdot 0+8$	+0.005
128	"	Slnb of Rnilway bridge No. 53	$1 \cdot 3$	-9.199	"	$-9 \cdot 185$	$+0.01 \pm$
(g) Line 63 A (Gioalior to Jhämei). At Jhänsi.							
51	54 E	Standard B. M. Jhānsi	$0 \cdot 0$	$0 \cdot 000$	1906-07	$0 \cdot 000$	$0 \cdot 000$
50	"	Vestry entrance, St. Martin's	$0 \cdot 0$	- 0.798	'*	-0.797	+0.001
49	"	Main "	$0 \cdot 1$	-0.747	"	- 0.749	-0.002
46	"	G. I. P. Railwny office	0.8	+15.058	"	+15.063	+0.005
47	"	Railway officer's liest-house	1.2	+ 23:353	"	+23.350	-0.103
48	"	Railwny Inntitute	2•1	$+8.548$	"	+ 8.559	+0.011
44	"	S. end platform of lly. station	2.5	+ 2.369	"	+ $2 \cdot 378$	+0.009
43	"	Centre of station platform	2.7	$+2.405$	"	+ 2.466	+0.061

- There bench-marks are on the live from Islãuibnd towards Aish-Mulanm.
to give the bench-marks near and at Gajrint railway etation published heights treated as a branch line in order

Table II.-Check-Leveling.-(Continued).
Discrepancies between the old and new heights of bench-marks.

* Receires new height.

TABLE II-Chick-Levelling-(Continued).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling.				Observed height above (+) or below (-) starting bencl.mark as determined by			
		Descriptiou.		Original levelling.		Check-levelling 1921-22.	
				Feet.	Date.	Feet.	Fect.
(k) Line 77 (Howrah to Rimganj). At Calcutta.							
368	79 B	Stundard B.M. at S.G's oflice	$0 \cdot 0$	$0 \cdot 000$	$\begin{aligned} & 1882.83 \\ & 1894.95 \end{aligned}$	$0 \cdot 000$	$0 \cdot 000$
36?	"	S.G's office	$0 \cdot 0$	-0.496	"	-0.497	-0.001
366	"	Photo-Litho office	0.2	- 1.650	"	-1.644	+0.006
365	"	M. I. office	$0 \cdot 3$	- 0.324	"	-0.335	-0.011
364	"	Sir James Outram Statue	0.9	$+0 \cdot 620$	"	+ 0.584	-0.036
372	,	Embedded B M. Sealdalı	$2 \cdot 6$	$+1.572$,	$+1.520$	-0.052*

(l) Line 77 L (Chikdaha to Jayrūmpur). At Chuādānga.

248	79 A	Embedded B.M. nt Chuādānga	$0 \cdot 0$	$0 \cdot 000$	1020.21	$0 \cdot 000$	0. 000
220	"	S. D. O's court	$0 \cdot 1$	$+2.915$	"	+ $2 \cdot 916$	+0.001
227	"	Munsif's court	$0 \cdot 1$	$+3.809$	"	+ 3.795	-0.014
226	"	Hospital	0'3	$+2.996$	"	$+2.989$	-0.007
46	,	Bridge	1-2	$+1.083$	"	+ 1.090	+0.007

(m) Line 77 M (Berhampore to Tinpahur). At Tinpahür.

53	72 P	Culvert, Tinpohãr	$0 \cdot 0$	$0 \cdot 000$	1920-21	$0 \cdot 000$	$0 \cdot 000$
54	"	Limbedded	$0 \cdot 3$	$+19 \cdot 289$	"	$+10 \cdot 162$	-0.127^{*}
55	'	Platform of station,	$0 \cdot 3$	+13.764	"	$+13 \cdot 740$	-0.018
50	"	Island platform	$0 \cdot 4$	+ $9 \cdot 942$	"	$+9.015$	-0.027
198	720	Ry. bridge $\mathrm{No}_{0} 294$	05	+ 3.486	"	$+3.488$	$+0.002$
197	"	Rock in sita	$2 \cdot 3$	$+50 \cdot 788$	"	$+50 \cdot 799$	$+0.011$
At Dhuliãn.							
37	72 P	Embedded B.M. Dhuliãn	$0 \cdot 0$	0.000	1920.21	$0 \cdot 000$	$0 \cdot 000$
36	"	Step Dhuliãn P. Stn.	$0 \cdot 0$	+ 4.543	"	+ 4.544	$+0.001$
95	"	Stone block	1.8	-1.839	"	- $2 \cdot 045$	-0.206*
34	"	Culvert No. 361	2•7	$-4 \cdot 066$	"	- 4.080	-0.014

- Distarbed.

TABLE II-Check-Leyellina-(Continued).
Discrepancies belween the old and new heights of bench-marks.

Table II.-Checi-Levelling.-(Continued).
Discrepancies between the old and new heights of bench-marks.

Bench marka of the ariginal levelling that were connected for check-leselling.				Observed height above (+) or helow (-) starting bench-mark as deternined by			
		Description.		Original levelling.		$\begin{aligned} & \text { Check-levelling } \\ & 1021-22 . \end{aligned}$	
			Miles,	Feet.	Date.	Feet,	Fiet.
(p) (Nira Canal Area). At Nira.							
76	47 J	Embedded, Nīra	$0 \cdot 0$	0.000	1877.79	0.000	$0 \cdot 000$
115	"	Shelka's Gumbad	$5 \cdot 3$	$+150 \cdot 312$	'	+150.280	+0.032
117	"	Bridge on Poon:a-Sàtāra Rond	7-5	$+205 \cdot 857$,	$+205 \cdot 850$	$+0.001$
(q) (Sulkur Barrage Area). At Shikiorpur.							
78	40 A	Embedderl	$0 \cdot 0$	$0 \cdot 100$	1910.11	$0 \cdot 000$	0•000
76		Step		+ $5 \cdot 833$	1904-06	$+5 \cdot 830$	-0.003
88	"	P!atform		+ 5.292	1910-11	$+5.276$	-0.016
7	"	Plinth		+ $2 \cdot 400$	1904-06	+ $2 \cdot 392$	-0.008
75		School		$+1.367$	"	+ 1.362	-0.005
At Eambar							
102	40 A	Embedded (Musto's 'Type)	$0 \cdot 0$	$0 \cdot 000$	1020-21	$0 \cdot 000$	$0 \cdot 000$
103	\cdots	District bungalow	$0 \cdot 0$	$+2.494$	'	+ $2 \cdot 4.9 \pm$	$0 \cdot 000$
104	"	Muklıtiāl'kar's office	$0 \cdot 3$	+ 1.719		+ $1 \cdot 712$	-0.007
At Madad Chiondia.							
22	35 M	Embedded (Musto s 'Type)	$0 \cdot 0$	$0 \cdot 000$	1020.21	$0 \cdot 000$	$0 \cdot 000$
24	"	Rail	$2 \cdot 5$	$+0 \cdot 364$	"	$+0.342$	-0.022
At Mchar.							
59	35 M	Emberded (Musto's T'ype)	$0 \cdot 0$	$0 \cdot 000$	1920.21	$0 \cdot 000$	$0 \cdot 000$
58	"	Inspection Bungalow	0-1	+ 0.965	"	$+0.965$	$0 \cdot 000$
60	"	Mukhtiārkare's office	$0 \cdot 6$	-0.373	"	- 0.364	+0.009
At Sehwin.							
84	85 N	Embedded (Musto's 'I'ype)	0.0	$0 \cdot 000$	1920-21	0•000	$0 \cdot 000$
85	"	Platform	$0 \cdot 6$	$+3.323$	"	+ 3'327	-0.006

TABLE II—Check-Levelling.-(Concluded).
Discrepancies betoeen the old and new heights of bench-marks.

table ili.-Retision Levelling.
Discrepancies between the old and uew heights of bench-marks.

Bench-marks of the original levelling that werc counected during the revisionary operations.				Difference between orthometric helghts, above (+) or below (-) the etarting bench-mark.			Difference (hevirion- Original), The sign + denotes thint the height was grenter and the siguless in 1021-22 than when originally levelled.
$\begin{aligned} & \text { 芯 } \\ & \frac{1}{3} \\ & \frac{1}{4} \end{aligned}$		Degcription.		From published heights	Dete of Original	$\begin{gathered} \text { From } \\ \text { revieion } \\ \text { 1921-22 } \\ \text { (Unadjusted). } \end{gathered}$	
			Miles.	Feet.		Feel.	Feet.

(a) Line 102 (Lịui Junction to Mārwār Pāli) (part of Khīnpur to Māruār Pāli).

1	45 G	Embedded B.M. at I, ūni junction		$0 \cdot 0$	$0 \cdot 000$	1907-09	$0 \cdot 000$	$0 \cdot 000$
2	"	Mile-stone No. 158	.	$1 \cdot 3$	- 1.893	,.	- 1.916	- 0.023
3	,'	Mile-stone No. 160	..	$3 \cdot 3$	+ $11 \cdot 312$	",	+ 11.223	89
4	,	Mile-stone No. 162		$5 \cdot 3$	+ 12.913	"	+ $12 \cdot 805$	- 0.108
5	"	Mile-stone No. 164		7-a	+ $11 \cdot 152$,	$+10 \cdot 986$	- 0.166
6	"	Embedded B.M. at Rohat station		$7 \cdot 8$	$+10 \cdot 490$,.	+ $10 \cdot 294$	- 0.186
8	"	Mile-stone No. 163		11.3	+ 18.516	"	+ 18.297	- 0.249
9	"	Mile-stone No. 170		$13 \cdot 3$	+ 4.424	"	+ 44.507	- 0.217
10	"	Mile-stone No. 172		$15 \cdot 3$	+ $85.52 \tilde{\gamma}$	"	+ 85.294	-0.233
11	,	Embedded B.M. at Kairla station		$16 \cdot 4$	+107•490	"	+107.260	- 0.230
12	"	Mile-stone No. 174,	...	$17 \cdot 3$	+105.940	"	+ $105 \cdot 684$	- 0.256
13	"	Mile-stone No. 176	...	$19 \cdot 3$	+ 88.028	.,	+ 87.760	- 0.268
14	"	Mile-stone No. 178		$21 \cdot 3$	+108.249	,	+107.975	- 0.274
15	,	Mile-stone No. 180		$23 \cdot 3$	+120.618	-	+120.382	- 0.266
16	"	Mile-stone No. 182		25-3	$+124.712$	"	+ $124 \cdot 422$	- 0.290
17	,	Einbedded B.M. at Mārwār Pāli station			+123 253	,	$\mid+122 \cdot 974$	- 0.279
		(b) Par			Meerut			
375	53 H	Stone B.M. Walipur		0.0	$0 \cdot 000$	1861-62	$0 \cdot 000$	$0 \cdot 000$
380	"	M.S. Allahābñd		4.6	-11.675	"	- $12 \cdot 000$	- 0.325*
(0) 388	"	Stone B.M. Khurja	...	11.0	- 23.030	"	- $23 \cdot 008$	$+0.022^{4}$
(10)								
12		Somma		$24 \cdot 6$	$-45 \cdot 493$	"	- 48.314	+ 0.179*
1	54.	Aligarh	...	28.5	- 64.961	.,	- $61 \cdot 810$	$+0 \cdot 151$
3	"	Well		38.9	- 60.333	,	- $60 \cdot 200$	$+0.133$
4	"	Distant Signal		$39 \cdot 5$	- 57.701		- $57 \cdot 557$	+ 0.144
69	"	Judge's Court		$40 \cdot 3$	- 63.833	,	- 63.686	$+0.147$
7		Post Office		$40 \cdot 7$	- $63 \cdot 801$		- 63.659	$+0.142$
7	"	Standard B.M. Aligarh	...	+1.2	- $57 \cdot 9.13$	"	- $57 \cdot 792$	+ $0 \cdot 151$

(c) Part of Line 26A (Sholapur to Bijāpur).

	470	Standard, Sholippur		$0 \cdot 0$	$0 \cdot 000$	1879-80	0	0.000
2	,	Protestnnt Church Sholēpur		0.4	- $13 \cdot 818$		- 13.810	$+0.008$
3		\uparrow on Bridge		0.6	- 32.728		- $32 \cdot 869$	- 0.141
6	"	Bridge in Soregnon		$4 \cdot 3$	- $63 \cdot 812$		- $63 \cdot 742$	$+0.070$
8	"	Temple Vndnkbal		$8 \cdot 9$	-143.805		-143.821	-0.016
16	,	Embedded Takli		19.0	- 177•374		-177.221	$+0.153$
20	"	Dipmal, Yalgi village		$25 \cdot 9$	- 93.871	"	- $93 \cdot 947$	- 0.076
22	"	- Z, Znlki		$30 \cdot 9$	- $\quad 0.632$	"	- 5-691	- 0.059
23		Embedded Zulki village		$30 \cdot 9$	- 9.627	",	- 9.582	+ 0.045
45	47 !	shãhāpur gnto		61.6	$+402 \cdot 976$	"	+402.977	$+0.001$
46	,	Cnnarese Schoul		$62 \cdot 2$	$+408 \cdot 504$		+ $408 \cdot 482$	- 0.022
47	,	Taj Bauli		$62 \cdot 3$	$+103 \cdot 878$	"	+403.869	- 0.009
48	"	Klinvas Khãn', Guru's Tomb.		$62 \cdot 6$	$+396 \cdot 215$	"'	$+396 \cdot 205$	- 0.010
49	"	Malika Jahān's MInsjid		62.9	$+393 \cdot 967$	",	+ $393 \cdot 955$	$0 \cdot 012$
50	"	Darbàr Hall bijāpur		$63 \cdot 1$	+392.612		$+392 \cdot 609$	- 0.003
51	"	Anar Mahal tunk.		$63 \cdot 5$	$+389 \cdot 398$		+ 389.397	- 0.001
52	"	Bridge on Hipargi rond		63.7	$+368 \cdot 197$;	$+368 \cdot 221$	$+0.084$
53	"	Stundırd Bijāpur		63.9	$+376 \cdot 699$	"	$+376 \cdot 694$	-0.005

[^3]List of Great Trigonometrical Survey Stations connected by Spirit-levelling, Season 1921-22.

Name of station.	Height above mean sea-lavel			Difference $\Delta^{\prime \prime}$-New	Remarig.
	New spiritlevelling	Old spiritlevelling	Triangalation		
	Feet.	Feet.	Feet.	Feet.	
Series 2 and 5. Budhon Meridional and Calcutla Longitudinal.					
1. Budhon H.S. ...	1867-609\|	\|	i867.0	-0.6	
Series 5. Calculta Longitudinal.					
2. Calcutta base-line South end 'T.S. 3. Ranjītgarh T.S. ...	$\begin{gathered} 13 \cdot 857 \\ 878 \cdot 895 \end{gathered}$		$\begin{array}{r} 13 \cdot 0 \\ 879.5 \end{array}$	$\left\lvert\, \begin{aligned} & -0.9 \\ & +0 \cdot 6 \end{aligned}\right.$	Top of circular pillar. (Fide Triaugulation pamphlet 79 B). Ground floor marli-stone. (V'ide Triango!ation pamphlot 43 L or Syn. Vol. IV, where height of top of $200^{\circ} \mathrm{ft}$. pillar is given as 900 ft .)
Series 32. Great Indus.					
4. Giıāŋ¢̄ Kuhāwar 'TS.	133.596	\| \ldots	$134 \cdot 0$	$+0 \cdot 4$	(${ }^{\text {Ground level mark-stono. }} \begin{aligned} & \text { a } \\ & \text { (ride Triangalation pamphlet } \\ & \mathbf{3 5} \text { M). }\end{aligned}$
Scries 29. Gujrat Longitudinal.					
6. Hāsilpur T.S. ...	$* 132 \cdot 989$	132-821	134	$+1 \cdot 0$	Top mark-stonc. (ride Triangulation pampletet 46 A)
6. Ingrodi T.S.	* 141.518	$151 \cdot 018$	152	$+10 \cdot 5$	Top mark-stone. (Vide Triangulation pamplet 41 N).
Series 28 and 35. Külhiawãr Meridional and Culch Coast.					
7. Vandlia S	*115.259	$115 \cdot 846$	116	$+0.7$	Top of circular pillar. (Tide 'Trinngulation pampllot 41 I).
Series 30. Cutch Coast.					
8. Bhnchau H.S. ...	-302.715	$303 \cdot 148$	301	-1.7	Top of circalar pillar. (Fide Triangulation pamplet 41 I).
9. Sukhpur H.S. ...	*356•381	$356 \cdot 636$	357	$+0.6$	Top of circalar pillar. (Fide Triangalation paruphlet 41 I).
10 Charakda H.S. ...	* 417.515	417 958	419	$+15$	Top of sirealar pillar. (Tide 'liriangulation pnimblet 41 E).
11. Sultãn-ka-got T.S. ...	${ }^{-188 \cdot 836}$	188•945	$188 \cdot 0$	-0.8	Gronad level mark.atone (Fide 1riadgulntion pnopblet 30 D).

[^4]TABLE IV-(Concluded).
List of Great Trigonometrical Survey Stations connected by Spirit-levelling, Season 1921-22.

* These values are provisional as the lines have only been levelled in one direction.

MAGNETIC SURVEY.

By E. C. J. Bond.

Pergonngl of No. 18 Party. Class I Officer.
Mr. E. C. J. Bond, V.D., in charge. Class $I I$ Officers.
Mr. N. R. Mazamdar.
,. Jiya Lal Sahgai, from the 1Gth March 1922.
Upper Subordinate Service.
Mr. B B. Shome.
,. H. C. Banerjee, B. A.
Lower Stbordinato Servic.
1 Mognetic Observer.
10 Compaters, etc.

The present report on the work of the Magnetic Party in 1921-22 comprises :-
I.-An account of the work during the field and recess seasons.
II.-A note on each of the observatories.
III.-Tables of the mean values of the magnetic elements, dates of magnetic disturbances, and hourly means and diurnal inequality of the magnetic elements at observatories in 1921.

I. Work during the field and recess sfasons.

1. Work during the field season.-Complete sets of magnetic observations were taken at the Dehra Dūn and Toungoo observatories for the comparison of instruments. The observatories at Alībāg (Bombay) and Kodaikänal, under the control of the Meteorological Department, were also visited by the officer in charge for the same purpose.

Double sets of magnetic declination, dip and horizontal force observations were taken during the field season at the six repeat stations-Quetta, Karāchi, Bina, Dibrugarh, Barrackpore and Waltair. These stations are visited annually to supplement the b-yearly observations at all the repeat stations in India in order to obtain accurate values of the average aunual change in the magnetic elements, as explained in last year's report.

The staff of the party at head-quarters were employed during the field season on the reduction of observations to the epochs 1909.0 and 1920.0 .

Dr. J. de Graaff Hunter, M.A., Mathematical Adviser to the Survey of India, who proceeded to England on leave in March 1922, kindly offered to take a magnetometer with him for comparison against the Kew standard instrument. Magnetometer No. 10 (with magnet No. 10) was selected as being the most suitable, as it had been used for some time as an auxiliary instrument to the standard at the Dehra Dun magnetic observatory. The comparison was decided upon with a view to affording a means of reducing the results of the magnetic observations in India to terms of the British standard at the Kew observatory.

Under the advice of Dr. Chree, F.R.S., Director of the National I'hysical Observatory at Kew, the Survey of India gilt inertia bar was sent to him for the redetermination of its moment of inertia, in order that the true value of the moment of inertia of magnet No. 10 might be ascertained during the comparative observations taken with that instrument at Kew.

During the field season the officer in charge of the party inspected the tidal observatories at Bombay (Apollo Bandar and Prince's Dock) and Karachi. The inspections of these and other such observatories were formerly carried out by the otheer in charge of No. 16 Party (Tidal), but it has been decided that the inspection of the tidal observatories at Bombay (Apollo Bandar and Prince's Dock), Karāchi, Madras, Kidderpore (Calcutta), Rangoon, Moulmein and Port Blair will, as far as is practicable, be carried out in future by No. 18 Party, in addition to the magnetic work.
2. Work durisy the recess.-The computation of the observations taken at repeat stations, and at observatories for the comparison of instruments, and the computation and tabulation of the provisional values of declination, dip, horizontal force and vertical force at the three observatories Dehra Dũn, Toungoo and Kodaikānal for 1921 have been completed. The mean values of these elements for the year, derived from the measurement of traces of all available days, excluding those of great disturbance, are given in Table III at the end of this report.

Publication of the results of the magnetic survey. -The final reduction of the observations at the observatories and in the field and at repeat stations to the epochs $1909 \cdot 0$ and 1920.0 is very nearly completed and it is hoped that the tables of results and the necessary
maps etc., most of which have already been sent to press, will be ready for publication with the Magnetic Volume about the middle of next year.

Special observations.-In response to a request by Dr. L.A. Bauer, Director of the Department of Terrestrial Magnetism of the Carnegie Institution of Washington, to all countries for co-operation in special simultaneous magnetic observations in comnection with the solar eclipse of the 21st Soptember 1922, magnetic observations were taken at the three observatories Dehra Dūn, Toungoo and Kodaikannal in accordance with the general scheme of work proposed by the Department of Terrestrial Magnetism.

The observations for declination at each of these observatories were taken simultaneously for every minute from 1 hour 28 minutes to 8 hours 2 minutes, A.M., Greenwich civil mean time, on the 20th, 21st and 22nd September 1922. At the Dehra Dün observatory, observations of horizontal force and dip were taken in addition, during the same interval of time, on the above three days. It was not possible to observe more than the one element at Toungoo and Kodaikinal where the observatory staffs are small.

The three observatories were within the limits of the zone of visibility of the eclipse and it is hoped that the results of the observations obtained in Inclia will be of value to Dr. Bauer in his investigation of the effects of the eclipse on the Earth's magnetism.
3. Programme for 1922-23.-During the ensuing field season observations will be taken for the comparison of instruments at the Dehra Dūn and Toungoo observatories. The Kodaikānal and Alibäg observatories, under the control of the Meteooological Department, will also be visited for the same purpose.

Magnetic observations will be taken at the repeat stations Quetta, Karāchi, Bina, Dibrugarh, Barrackpore, Waltair and Moulmein in Burma, for the purpose of supplementing the observations taken at all the repeat stations every 5 years, and in order to obtain reliable values of the annual changes in the magnetic elements.

The tidal observatories at Karãchi, Bombay (Apollo Bandar and Prince's Dock), Madras, Kidderpore, Rangoon and Moulmein, which are on route to the magnetic observatories and repeat stations, will be inspected.

II.-The Odservatomes in 1921-2a. Dehra Dun Observatory.

1. The magnetographs, with a few exceptions, have worked satisfactorily during the year under report.

The clock which rorks the drums of the declination and horizontal force magnetographs stopped on the 15 th December. After oiling it worked well, but a week later it stopped again and continued to stop frequently up to the end of the month, when it was removed, opened up and cleaned. The axles of the drum were also cleaned and oiled and the clock then worked satisfactorily. On the 17th January, however, it stopped again. It was remored, taken to pieces and thoroughly cleaned in the Trigonometrical Survey workshops on the 19 th , after which no further trouble was experienced.

The arrester of the vertical force magnetograph went out of adjustment on the 12th lecember. It was put into proper working order on the 15 th.

The vertical force magnetograph was adjusted on the 7th July on account of the magnet line being near the edge of the magnetogram, owing to secular change.

The galvanometer used in connection with the eartli-inductor was reported to be working badly towards the end of August and the observer in his attempt to adjust it snapped the suspension fibre. The instrument was put into proper working order on the 81 st Auguat.

Magnetometer No. 5 (with magnet No. 5B) was introduced as an auxiliary instrument in place of No. 10 which was taken to England by Dr. deGraaff Hunter for comparison against the Kew standard. The results of the subetituted instrument, in the hands of the new observer, have unfortunately not been very satisfactory.

A large crack in the thick cement plastering on the north wall of the passage in the observatory was repaired early in July as a precautionary measure against any excessive flow of water into the observatory during the monsoons.

The percolation of water into the passage of the observatory began this year at the end of August when the water rose to 6 inches. Pumping was resorted to immediately and was kept up day and night as there was no sign of the water diminishing until the 6th September. On the recurrence of heavy rain the water gradually rose again to 12 inches on the 14 th September, in spite of continuous pumping. After that date the water gradually decreased until it finally subsided in the first week of October.

Besides the danger to the observatory from repeated inundations during the mopsoons, there is now an additional menace in the introduction of electric trams into Dehra Dūn, which will necessitate the removal of the observatory without delay. Every endeavour is being made to get the necessary funds sanctioned for transferring the observatory to a suitable place at a safe distance from the disturbing effects of the electric tramway.

It is proposed to build the new observatory above ground level so that the risk of inundations, as experienced in the underground observatory at Dehra Dūn, may be avoided.

It is unfortunate that the present observatory, the principal base station of the magnetic survey of India which has been in existence for the past 22 years, should have to be abandoned. It is hoped, however, that it will be possible to preserve the continuity of the magnetic records by operating the old and new observatories together under undisturbed conditions for a few months at least before discontinuing observations at Dehra Dūn.
2. Mean values of the declination and H.F. constants. -The table below gives the mean monthly values of the magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$, and the accepted values of p and $q u s e d$ in determining the value of the distribution factor. The values of the moment " m " in the table were derived from vibration observations taken with the chronograph.

Mean values of the constants of magnet No. 17 in 1921.

Montig.		Declination congtante.	H. F. CONSTANTS.					
		Menn magnetic collimation.	Dibtribution Factohs.				mean valueg orm.	
			$\mathbf{P}_{1.2}$	$\mathbf{P}_{2.3}$	Accepted ralues.		Montbly meane.	Accepted m,
					\mathbf{p}	9		
January	...	- 646	6.03	7-06	$\stackrel{8}{8}$	会	$807 \cdot 0$	
Febraery	\cdots	- 640	6.86	$7 \cdot 24$			$807 \cdot 01$	
March	-•	-644	6.74	7-13			$806 \cdot 99$	
April	-	- 044	5.70	6.87			$806 \cdot 81$	
May	\cdots	- 644	$5 \cdot 83$	$6 \cdot 87$			806.85	
Jane	\cdots	- 647	$5 \cdot 81$	7-01			806.81	
Joly	\ldots	- 653	6•76	$7 \cdot 24$			$806 \cdot 80$	
Angust	\ldots	-70	$5 \cdot 80$	0.95			806.81	
Septomber	\cdots	-71	581	6.89			806.87	
October	...	- 70	$5 \cdot 77$	7'16			$806 \cdot 91$	
Novernber	\cdots	- 657	$5 \cdot 80$	6.93			$807 \cdot 03$	
December	\cdots	- 689	$5 \cdot 87$	6.91			80\%.08	

3. Mean base line values.-The table below gives the mean monthly observed and accepted values of the declination and horizontal force base lines: the accepted values have been used to compute the values of these elements for 1921. The horizontal force base lines have been derived from H as determined with the moment of inertia and distribution coefficient used in the computations for 1915 .

Base line values of magnetographs in 1921.

Montha.		Declination.		Horizontal Force.	
		Mean value of Bare line.	Base lino accepted	Mean value of Base line.	Base line accepted
			-	C. G. S.	C. G. S.
Jenuary	\cdots	$13 \cdot 7$	$13 \cdot 7$	-32673	- 32673
February	\cdots	14.1	$14 \cdot 1$	-32673	'32673
March	\cdots	14.0	14.0	-32677	-326\%7
April	\cdots	14.3	$14 \cdot 3$	-32682	- 32682
May	-•	14.4	14.4	- 32680	32680
Jone	...	14.6	14.6	- 32678	32678
July	\cdots	14.8	$14 \cdot 8$	-32674	32674
Augast	\cdots	$14 \cdot 6$	14.6	-32667	-3:667
September	...	14.5	14.5	-32672	32672
October	\cdots	14.9	14.9	-32669	- 32669
November	..'	14.9	$14 \cdot 9$	- 32663	-32663
December	\cdots	$14 \cdot 8$	$14 \cdot 8$	- 32657	. 32657

4. Mean scale value and temperature range. -The mean scale values for 1921 for an ordinate of $1 / 25$ inch are :-

$$
\text { Horizontal Force } 4 \cdot 36 \text { gammas. }
$$

Declination $1 \cdot 03$ minutes.
Vertical Force $8 \cdot 31$ to $8 \cdot 93$ from 1st January to 151 h July. $10 \cdot 4.7,10 \cdot 87$ from 16th July to 16 th August. 6.71 , 7.46 from 19th August to 31st December.

The mean temperature for the year was $26^{\circ} \cdot 9 \mathrm{C}$.; with maximum and minimum monthly values of $27^{\circ} \cdot 0 \mathrm{C}$. and $26^{\circ} \cdot 6 \mathrm{C}$. The temperature of recluction is $27^{\circ} \cdot 0 \mathrm{C}$.
5. Mean monthly values and annual changes.-The following table shows the monthly mean values of the magnetic elements for 1920 and 1921 and the annual changes for that period. The annual changes for horizontal force are deduced from the values of H corrected for the moment of inertia and the distribution factor used in the computations for 1915.

Annual changes at Dehra Dün in 1920-21.

Months.		Horizontal Fonct$\text { . } 32000 \mathrm{C}, \mathrm{G} . \mathrm{S} .+$			IRECLHATION E. $1^{1}+$			Dit N. $41^{3}+$			Ventical Force -32000 C. G. S. +		
		1920.	1921.	Aunual clange.	1020.	1921.	A nnual chnoge.	1020.	1921.	Annual chnnge.	1020.	1021.	Anntal chauge.
		γ	γ	γ	,	,	,	,	,	,	γ	γ	γ
Janaary	..	966	946	-20	54.4	$48 \cdot 9$	-5.5	57.6	$62 \cdot 3$	+ 47	920	990	+ 70
Felirnary		967	953	- 14	53.6	48.6	-5.0	57.9	62.2	$+4 \cdot 3$	026	995	+ 69
March	\cdots	956	956	0	$53 \cdot 6$	$48 \cdot 3$	-5.3	59.0	$62 \cdot 6$	+ $3 \cdot 6$	986	1007	+ 71
April	\cdots	950	960	$+10$	53.1	47.7	$-5 \cdot 4$	59.6	$62 \cdot 9$	+ 3.3	$9 ; 3$	1016	+ 73
May	\cdots	961	938	-23	$52 \cdot 7$	+7.5	-52	$50 \cdot 2$	64.4	+ $5 \cdot 2$	945	1022	+ 77
Jone	\cdots	969	945	- 24	$52 \cdot 2$	47.2	-5.0	$59 \cdot 1$	(14.5 5	$+5 \cdot 4$	951	1030	79
July	\cdots	006	054	-12	\% $1 \cdot 8$	46.7	$-5 \cdot 1$	69.5	64.4	$+4 \cdot 9$	055	1039	+ 84
Angast	\cdots	957	$9+2$	-15	51.3	46.4	-4.9	60.5	$65 \cdot 0$	+ 4.5	965	10:17	+ 72
September	\cdots	940	040	0	51.1	$46 \cdot 1$	- 6.0	61.3	65.3	$+4.0$	966	1041	+ 75
Octaber	\cdots	929	936	+ 7	50.4	46. 1	-4.3	61.8	65.5	$+3.7$	964	1042	+ 78
November	"	924	995	+ 11	$40 \cdot 9$	$45 \cdot 8$	$-4 \cdot 1$	61.8	$65 \cdot 6$	+ 3.8	959	10.42	+ 83
December	\cdots	926	929	$+3$	40.4	45.4	-4.0	61.8	$66 \cdot 1$	+ 4'3	961	104 5	$+85$
Means	...	951	045	- 0	62.0	+7.1	-4.9	$59 \cdot \theta$	64-2	$+4 \cdot 3$		102ō	+ 70

Toungoo Observatory.

The maguetographs have worked very well during the year under report
On the 14th May the base line light on the visual scale was not discernible and it was discovered that water had lodged in the scale box owing to the observatory leaking after a heavy fall of rain. The water was removed and the light adjusted. Necessary repairs to the roof of the observatory were carried out by the Public Works Department on the 17 th June.
2. Mean values of the declination and H.F. constants.-The table below gives the mean monthly values of the magnetic collimation aud distribution constants $P_{1.2}$ and $P_{2,3}$ for magnets Nos. 19 A aud 20 and the accepted values of p and q used in determining the distribution factor for magnet 19 A . The values of the moment " m " as obtained from this revisel distribution factor are given for magnet No. 19 A.

The distribution factor for magnet No. 20, denoted by " P " in the table, is the approximate expression $\left(1+\frac{P}{r^{*}}\right)^{-1}$, which has been used in the computation of $\frac{m}{\bar{H}}$. The correct value of the distribation factor for this magnet, which will include the Q term in the expression $\left(1+\frac{P}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1}$, will be computed later on when sufficient data are available for an accurate determination, as it is only from an extended series of deflection observations that a reliable value of the distribution coefficient can be obtained. The provisionally accepted value of " m ", given in the table for magnet No. 20 , has been determined from the approximate expression used for the distribution factor.

The values of " m " for both magnets Nos. 19 A and 20 were derived from vibration observations taken with the chronograph.

The monthly mean values of " m " for magnet No. 20 are fairly steady and are murh more satisfactory as compared with the rapidly decreasing values of the moment of magnet No. 19 A previously in use at the observatory.

Wean values of the constants of magnets Nos. 19 A and 20 in 1921.

$$
\text { Magnet No. } 19 \text { A was used up to Febrnarg. }
$$

$$
\text { No. } 20 \text {., ". from March }
$$

3. Mean base line values.-The table below gives the mean monthly observed and accepted values of the declination and horizontal force base lines. The accepted values have been used to compute the values of these elements for 1921. The horizontal force base lines for January and February have been derived from H as determined with the moment of inertia and distribution coefficient used in the computations for 1915. The base lines for the remainder of the year have been derived from H as determined with the moment of inertin obtained for magnet No. 20 at Toungoo in February 1921 and the approximate expression of the distribution coeflicient referred to in the preceding para.

The value of the instrumental difference, using these provisional constants, is 19A $20=4$ gammas for borizontal force. The instrumental difference for declination between 19A and 20 is nil.

Base line values of magnetographs in 1921.

Months.		Declination.			Horizontal Force.		
		Mean value of Base liue.	Base line nccepted.	Rejares.	Mean value of Inse line.	Bnse line necejited.	Remabis.
			\checkmark	Mngnet No. 19A	C. G. S.	C. G. S.	
January	\ldots	114.7	$114 \cdot 7$	used ap to end of	- 38641	-38641	19A used op to
February		114.4	114.4	Febranry and No. 20, from March.	-36643	- 38643	end of Febranry
March	\ldots	$114 \cdot 1$	$114 \cdot 1$	Difference betreeen 19A and 20	38947	-38947	20 nsed from
April	...	114.1	114.1	is nil.	-389+7	- 38947	Difference
Mug	\ldots	114.2	$114 \cdot 2$		$\begin{array}{r} 38945(1) \\ -38939(2) \end{array}$	$\begin{aligned} & 38945(1) \\ & \cdot 38939(2) \end{aligned}$	$19 \mathrm{~A}-20$ is 4 . (1) Lip to 12th
June	\ldots	$114 \cdot 3$	$114 \cdot 3$		- 38933	- 38933	(2) Fromi 13th
July	\ldots	114.6	$114 \cdot 6$		-36928	-38928	to 31st Miny.
August	...	$114 \cdot 5$	114.5		-39926	- 38929	
September	..	114.2	114.2		- 38928	-38928	
October	\ldots	114.3	143		-38924	-38924	
November		114.2	114.2		- 38921	-36921	
December		114.3	$11+3$		-38916	-38916	

4. Mean scale values and temperature range.-The mean seale values for 1921 for an ordinate of $1 / 25$ inch are :-

Horizontal Force $5 \cdot 36$ gaminas to 28th February.

$$
5 \cdot 20 \text { " from } 28 \text { th February to the end of the year. }
$$

Declination $\quad 1 \cdot 0 \cdot t$ minutes.
Vertical Force $5 \cdot 77$ gammas to 5th May.
$5 \cdot 83$, from 5th May to the end of the year.
The mean temperature for the year was $89^{\circ} \cdot 2$ Fahr. with maximum and minimum monthly values of $89^{\circ} \cdot 5$ and $89^{\circ} \cdot 0$ Fahr. The temperature of reduction is $89^{\circ} \cdot 0$ Falr.
5. Mean monthly calues and annual changes.-The table below shows the monthly mean values of the magnetic elements for 1920-21, and the annual clanges for that period. The annual changes for horizontal force are deduced from the values of H corrected for the moment of inertia and distribution factor as referred to in para. 3.

Annual changes at Tonngoo in 1920-21.

могтия.	Herizontal forcf -30000 C. G. S. +			$\begin{aligned} & \text { IVClination } \\ & \text { W. W }+ \end{aligned}$			$\begin{gathered} \text { Dir } \\ \text { N. } 23+ \end{gathered}$			Ventical Fonce -16000 C. G. S. +		
	1020.	1031.	Anntual	193\%	1991.	$\begin{aligned} & \text { Annur } \\ & \text { clungre. } \end{aligned}$	190.	1021.	Annual clange.	1920.	1821.	${ }_{\substack{\text { Annual } \\ \text { clunge. }}}^{\text {cen }}$
	γ	γ								γ	γ	r
Jnumary	106	125	+23	$22 \cdot 3$	$2 \overline{5} \cdot 6$	+3.3	7.7	$7 \cdot 2$	-0.5	703	704	+ 3
Fehrnars	113	139	+30	22.6	25.6	+3.0	7.8	7.0	-0.8	708	707	+ 1
Marrh	107	112	+ 39	22.7	25.4	+2.7	7.7	6.8	-0.9	703	706	+ 5
April	105	143	+ 42	23.11	257	+2.7	8.2	f. 8	-1.4	710	707	-1
Mar	114	117	+ 7	$23 \cdot 5$	26.0	+2.5	7.7	6.4	-1.3	707	690	-15
Juue	128	122	- 2	$23 \cdot 4$	26.4	+3.0	7.7	6.7	-1.0	712	697	-13
Jony	118	132	+18	$23 \cdot 6$	26.9	+3. a	$7 \cdot 8$	6.7	-1.1	710	71	- 7
Angoct	$1(19$	129	+ 23	23.9	$27 \cdot 1$	+3.2	7.9	71	-0.8	206	i_{4}	0
sppremier	103	132	+33	24.5	27.6	+3.1	$7 \cdot 9$	$7 \cdot 3$	-0.6	705	\% O	+ 5
October	110	131	+ 2.5	24.7	28.0	+33	7.7	74	-0.3	20.4	710	+8
Nirember	121	135	+18	24.*	28.1	+3.3	7.6	$7 \cdot 2$	-0.3	707	708	3
December	133	134	+5	25.3	28.6	+3.9	$7 \cdot 3$	$7 \cdot 2$	-0.1	709	${ }^{208}$	+ 1
Meade	114	132	+22	23.7	26.8	+3.1	: 7	7.0	-0.7	707	704	- 1

* The B. F. and V. F. Valnes fir 1920 are in terms of Magact 19 A adol thoge for 1921 are in terms of

Magoet 20. The annal changes have been corrected for the lifference bet recon Mayucts 19 a and 20.

This observatory is under the control of the Meteorological Department, but the absolute observations and the records of the self-registering instruments are forwarded periodically by the Director of the observatory, for computation and for record in No. 18 Party (Magnetic).

The working of the magnetographs has been fairly satisfactory. The clock which works the drums of the declination and horizontal force magnetographs was reported to have stopped very often during the year. The cause of these stoppages is not stated but they are probably due to the clock requiring a thorough cleaning.

The base line value of the declination rose to $0^{\prime} \cdot 8$ on the 18th January and returned to its normal value on the 21 st February. The cause of the change, from a scrutiny of the records, is traceable to lost motion in the tangent screw of the magnetometer which is reported to have been cleaned on the 18th January.

At the request of the Director, the officer in charge of the magnetic party, during his visit to the observatory for taking the annual comparative observations, adjusted the horizontal force magnetograph on the lst March, on account of the shift in the magnet line to the edge of the magnetogram, due to secular change.
2. Mean values of the declination and H. F. constants.-The table below gives the mean monthly values of the magnetic collimation, the distribution constants $\mathrm{P}_{1 \cdot 2}$ and $\mathrm{P}_{2 \cdot 3}$ and the accepted values of p and q used in determining the values of the distribution factor. The values of the moment " m " are also given, as determined by this revised distribution and the moment of inertia used for the computations in 1915. The values of " m " in the table were derived from vibration observations taken with the chronograph.

Mean values of the constants of magnet No. 16 in 1921.

Montus.		Declination constants.	H. F. constante.					
		$\begin{gathered} \text { Meau } \\ \text { magnetic } \\ \text { collimation. } \end{gathered}$	distindution Factong.				Mean maltes of m.	
			$\mathrm{P}_{1.2}$	$\mathrm{P}_{2.3}$	Accepted ralues		Monthly	$\begin{gathered} \text { Accepted } \\ \text { m. } \end{gathered}$
					P	q		
Japnary	\cdots	-315	6.58	$8 \cdot 10$			$882 \cdot 24$	
Feloruary	...	-320	6.58	835			88221	
March	...	- 317	6.56	873			$882 \cdot 07$	
April	\ldots	- 318	6.54	8.65			882.01	$\stackrel{\square}{\square}$
Mny	...	- 317	6. 58	8-65			$892 \cdot 63$	$\stackrel{\text { er }}{0}$
June	.	-3 15	C 50	8-4.	$\stackrel{\text { ¢ }}{\sim}$	\bigcirc	882.11	占
July	...	- 316	654	840			882.13	$\stackrel{7}{2}$
Angnst	...	-314	6. 64	A. 54			s82.14	∞
Seplerulier	...	-313	6. 611	8.5;			$882 \cdot 10$	
October	...	- 313	c. 61	8.41			$882 \cdot 11$	
Norember	...	-310	6. 63	$8 \cdot 4$			882.16	
December	...	- 317	E. 60	8-62			882.11	

3. Mean base line walues.-The table below gives the mean monthly obsersed and accepted base line values of the declination and horizontal force magnetographs: the accepted valnes have been used to compute the values of these elements for 1921. The horizontal foree base line values have been derived from II as determined with the moment of inertia and distribution coeflicient usel in the computations for 1915.

Base line values of magnetographs in 1921.

Months.			Drclination.				Horizontal Force.	
			Mean value of Base line.		Baze line accepied.		Menu value of Base line.	Hase line necepted.
			-		-	,	C. G. S.	C. G. S.
January ${ }^{\text {a }}$	2	58.2	2	$58 \cdot 2$	-37340	- 37340
February	\ldots	\cdots	2	$58 \cdot 0$	2	$58 \cdot 0$	- 37345	-37345
March	\ldots	\ldots	2	58-2		$58 \cdot 2$	- 37344	-37344
April	\cdots	...	2	$57 \cdot 9$	2	$57 \cdot 9$	- 37343	- 37343
May	\ldots	\ldots	$\stackrel{2}{2}$	$57 \cdot 9$	2	$57 \cdot 9$	- 373.44	-37344
June	2	58-2	2	58.2	-37339	. 37339
July	\cdots	\cdots	2	$58 \cdot 0$	2	$58 \cdot 0$	-37337	-37337
August	\ldots	\ldots	2	$57 \cdot 7$	9	$57 \cdot 7$	-37334	-37334
September	\ldots	\cdots	2	$57 \cdot 5$	2	$57 \cdot 5$. 37336	- 37336
October	\cdots	\cdots	2	$57 \cdot 2$	2	57-2	-37335	-37335
November		\ldots	2	$57 \cdot 4$	\cdots	57.4	-37336	-37336
December	\ldots	\ldots		$57 \cdot 5$		$57 \cdot 5$	-37337	. 37337

4. Mean scale values and temperature range.-The mean scale values for 1921 for an ordinate of $1 / 25$ inch are :-

$$
\begin{array}{ll}
\text { Horizontal Force } 5.95 \text { gaminas. } \\
\text { Declination } & 1.03 \text { minutes. } \\
\text { Vertical Force } & 8.07 \text { gammas to } 13 \text { th June. } \\
& 8.84 \text { gammas from 14th June. }
\end{array}
$$

The mean temperature for the year was $17^{\circ} \cdot 7 \mathrm{C}$; with maximun and minimum monthly values of $18^{\circ} \cdot 3 \mathrm{C}$. and $16^{\circ} \cdot 6 \mathrm{C}$. The temperature of reduction is $19^{\circ} \cdot 0 \mathrm{C}$.
$\overline{\mathbf{j}}$. Mean monthly values and annual changes.-The table below gives the monthly mean values of the magnetic elements for 1920 and 1921 and the annual changes for that period. The annual changes for horizontal force are deduced from the values of H corrected for the moment of inertia and the distribution factor used in the computations for 1915.

Annual changes at Korlaikīnal in 1920-21.

Monthe.		Horizontal Fonce-37000 C. G.S. +			Declifation$\text { W. } 1^{\top}+$			$\begin{gathered} \nu_{I P} \\ N .4^{j}+ \end{gathered}$			Vertical Force .03000 C. G.S. +		
		1920.	1021.	Aunun! chauge.	1020.	1921.	Annunl change.	1020.	1921.	Annual clinuge.	1020.	1921.	Annual chnuge.
		γ	7	γ							γ	γ	γ
Jennary	\cdots	775	812	+37	$47 \cdot 5$	$52 \cdot 6$	+5.1	$34 \cdot 4$	$37 \cdot 2$	$+2 \cdot 8$	021	155	+34
February	\ldots	779	H27	+48	$47 \cdot 9$	$53 \cdot 3$	$+5 \cdot 1$	$34 \cdot 7$	37.3	$+2 \cdot 6$	025	057	+32
March	...	767	832	+ 65	18.0	$53 \cdot 3$	$+5 \cdot 3$	$3 \mathrm{~s} \cdot 6$	$37 \cdot 5$	+1.9	084	('60	$+20$
April	...	765	831	+66	48.6	$63 \cdot 5$	$+4 \cdot 9$	36.2	$38 \cdot 0$	+1.8	040	040	+26
Mas	..	777	813	+3G	49.0	53.7	+4.7	$30 \cdot 6$	$38 \cdot 7$	+2.1	046	072	$+26$
June	\ldots	701	818	+27	$49 \cdot 8$	$54 \cdot 4$	$+4 \cdot 0$	36.1	$38 \cdot 8$	$+2 \cdot 7$	$0+2$	074	+32
July	...	784	833	$+39$	$50 \cdot 6$	$54 \cdot 4$	+3.8	36.3	$30 \cdot 1$	$+2 \cdot 8$	044	079	+35
August	...	795	833	+38	51.0	$54 \cdot 5$	+3.5	$36 \cdot 7$	39-1	+2.4	049	078	+29
Beptembor	...	792	8.14	+62	51.0	54.7	$+3 \cdot 7$	36.4	$38 \cdot 0$	+2.5	045	077	+32
October	. \cdot	798	842	+ 41	- $1 \cdot 5$	54.7	$+3 \cdot 2$	$36 \cdot 7$	$38 \cdot 8$	+2.1	049	076	+27
November	...	799	848	+ 49	51.9	$55 \cdot 3$	+3.4	36.8	39.0	+2.2	050	078	+28
December	. \cdot	806	652	$+40$	$52 \cdot 3$	$55 \cdot 9$	$+3 \cdot 6$	37-1	$39 \cdot 1$	+2.0)	054	080	+ 26
Mesns	\cdots	787	832	+45	49.9	54.2	+4.3	$36 \cdot 1$	38-5	+2.4	042	071	+29

hiI.--Table of Results.
Mean values of the magnetic elements at observatories in 1921.

$\kappa_{1!t}$

$\begin{aligned} & \hline \stackrel{\ddot{0}}{\ddot{4}} \\ & z \end{aligned}$		$\stackrel{+}{i}$		$\stackrel{9}{9}$
\％		$\stackrel{+}{\text { 字 }}$		$\stackrel{\sim}{4}$
$\mathscr{8}$		＋ 安		－
$\hat{\wedge}^{1}$		$\left\|\begin{array}{l} \oplus \\ i \\ i \end{array}\right\|$		－
ส		$\begin{aligned} & \text { 孜 } \end{aligned}$		$\stackrel{\bullet}{0}$
우		$$		－
$\stackrel{\square}{\square}$		$\underset{\sim}{\underset{\sim}{*}}$		F－
$\stackrel{\sim}{\sim}$		$\begin{aligned} & \infty \\ & \dot{子} \\ & \hline \end{aligned}$		＋
\pm		$\underset{-}{7}$		$\stackrel{\bullet}{4}$
\exists		$\underset{\sim}{\underset{\sim}{\infty}}$		＋
$\stackrel{3}{\square}$		$\begin{aligned} & \infty \\ & \dot{\oplus} \\ & \hline \end{aligned}$		－
\pm		$\left\lvert\, \begin{aligned} & \vec{i} \\ & \dot{e} \end{aligned}\right.$		＋
$\stackrel{\square}{-}$		$\stackrel{\theta}{\dot{\theta}}$		$\stackrel{-}{4}$
$\begin{aligned} & \text { g } \\ & \text { 号 } \end{aligned}$		$\begin{aligned} & \ddot{6} \\ & \dot{q} \end{aligned}$		W
$=$		$\overrightarrow{\dot{F}}$		0
\bigcirc				$\stackrel{\square}{4}$
\bigcirc		$\begin{aligned} & \text { eq } \\ & \dot{+1} \end{aligned}$		守
∞		$\underset{\sim}{\infty}$		$\stackrel{\ominus}{8}$
\cdots		$\stackrel{+}{\dot{+}}$		$\stackrel{\text {－}}{\text { ¢ }}$
\bullet		$\stackrel{\infty}{\dot{\phi}}$		$\stackrel{-}{\text { ¢ }}$
\because		$\left\lvert\, \begin{aligned} & 0 \\ & \dot{\varphi} \end{aligned}\right.$		$\stackrel{\infty}{*}$
＊		10		$\stackrel{+}{+}$
∞		$\stackrel{N}{i}$	$\rightarrow 00601$罗孚守 与守家	$\stackrel{+}{+}$
N	の ∞ が 5 N เ 	$\underset{\dot{7}}{\underset{\sim}{i}}$		$\stackrel{\sim}{*}$
\rightarrow	 	$\underset{\sim}{4}$		$\stackrel{+}{+}$
安		$\stackrel{+}{4}$		$\stackrel{\sim}{4}$
$\begin{aligned} & \text { 㚜 } \end{aligned}$		$\begin{aligned} & \text { 界 } \\ & \text { P } \end{aligned}$	$\underbrace{\text { Ean }}_{\text {somung }}$	䍖

[^5]| $\begin{aligned} & \text { 品 } \\ & \text { © } \\ & \text { S } \end{aligned}$ | ro | 咼号品 | \％ | 里萝号 | | 容 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ジ | | 雨荅罧 | \％ | | | 㶨 |
| ： | －寅宗 | 䦡が号 | \％ | 合ずす | | \％ |
| ผิ | | 篤令芯 | \％ | | 怘ず号 | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |
| ล | \cdots | N | ¢ | | | ¢ |
| สิ | +茴 | | 盛 | 잉융융 | | 器 |
| $\stackrel{\square}{-}$ | 「유¢ㅜ․ | 面会令 | $\stackrel{\circ}{\circ}$ | 会令荌哭 | | \＃ |
| 2 | ro | | 令 | 奇荌 | ¢ | 跌 |
| 上 | 入管倹桇 | | $\stackrel{\infty}{\infty}$ | 客䍓畐 | 筞ずす | 志 |
| $\stackrel{\sim}{\square}$ | | 号宁淢 | $\vec{\sigma}$ | 运晾学 | 吕䓵号 | 号 |
| 12 | | | 2： | | 戓気答 | 䢔 |
| \pm | | 等管产 | | | 呙号感 | \％ |
| $\stackrel{\square}{-}$ | $\stackrel{\infty}{\circ}$ | 哭等品 | \％ | | 突哭品 | ¢8 |
| $\begin{aligned} & \text { g } \\ & 8 \\ & 8 \end{aligned}$ | 入㚜会尽 | | 莫 | 号が答 | | $\stackrel{5}{6}$ |
| F | | | \％ | 「等呂 | 会容管 | \％ |
| 9 | －察穴昜 | が号ず | $\stackrel{8}{+}$ | | | 980 |
| $=$ | | 突它 | － | | | 㲾 |
| \sim | | 管谚为 | صِ | | 串家気 | 9 |
| － | | 号宗第第 | \％ | | 令無 | \pm |
| ＇$=$ | 二気皆永 | | ず | | 答声需 | 尔 |
| 10 | | | \％\％ | | 㗊萓志 | ¢ |
| \rightarrow | $\text { + } 9$ | 훙숭칭 | $\stackrel{7}{3}$ | 里号号 | 染首志 | $\stackrel{\square}{0}$ |
| \bigcirc | \rightarrow 参它荅 | | あ | 会突志 | | $\stackrel{1}{5}$ |
| 03 | 准家号品 | 第会永 | $\stackrel{8}{8}$ | | 令吕号 | $\stackrel{7}{6}$ |
| \cdots | －呂呂咨 | 気第莧 | \％ | | | \％ |
| Bu | | 표ㅇㅠㅠ웅 | 坒 | 荡気 | 吅唚詈 | － |
| R 号 相 | | | 気 | | | 最 |

	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{array}{ll}\text {－oso Nont } \\ 1+ & 1++\end{array}$	0
$\begin{array}{ccc} 7 \infty & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}$	1	$\begin{array}{ll}\text { \＃entino } \\ 1+1 & 1+\end{array}$	7
$\begin{array}{ccccc} \sim N & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	\sim 1	$\begin{array}{cc}\text { H－N } \\ 1+1 & 111\end{array}$	$\stackrel{m}{1}$
$\begin{array}{rr} -00 N & +N O \\ 111 & 11 \end{array}$	－	0000000 1	+ 1
$\begin{array}{rll} +\infty & +\infty \\ 11 & 1 & 1 \end{array}$	\cdots		\cdots
$\begin{array}{ccc} \text { HOEORNR } \end{array}$	$\stackrel{1}{2}$	$\begin{array}{cccc}-\infty & 0 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array} 1$	$\stackrel{\square}{1}$
$\begin{array}{\|ccccc} \hline \lambda N & \operatorname{lin} & 0 & 0 & \pi \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{\square}{1}$	$\begin{array}{ll}\text { ORの } \\ 111 & 111\end{array}$	10 1
$\left.\begin{array}{cccc} +\infty & \infty & \infty & + \\ 1 & 1 & 1 & 1 \end{array} \right\rvert\,$	$\stackrel{1}{1}$		$\stackrel{1}{1}$
$\begin{array}{rrr} +\infty & -\infty \\ ++1 & 1 & 1 \end{array}$	$\begin{gathered} \text { N } \\ 1 \end{gathered}$	ササN +++50 +++	+ +
$\begin{aligned} +\infty \sim \infty & +N \sim \\ +++ & +11 \end{aligned}$	N +		a + +
$\begin{array}{cc} \lambda-\infty \sigma & \sigma \infty \omega \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$		$\stackrel{9}{+}$
	$\stackrel{+}{+}$		$\xrightarrow[+]{+}$
$\begin{aligned} \text { ros on } \\ +++40 \end{aligned}$	$\stackrel{7}{+}$		$\xrightarrow{9}$
	$\stackrel{+}{\infty}+$		－ + +
	\cdots	$\begin{array}{ccc} \infty \times \infty & O N \\ +11 & 11 \end{array}$	\therefore
	+ + +		\cdots
$\begin{aligned} & r \sin +\cos \\ &++ 1++ \end{aligned}$	∞ +	$\begin{array}{rlrl}+\infty \\ 1 & 1 & 1 & 1 \\ 1\end{array}$	$\stackrel{1}{1}$
$\begin{array}{rr} \text { ~ISAN N N N N } \end{array}$	$\xrightarrow{+}$	$\begin{array}{cccc}\text { moner } \\ 1 & 1 & 1 & 1\end{array} 1$	\cdots
$\left\lvert\, \begin{array}{ccc} \operatorname{rin}+0 & -\cot \\ ++ & 1 & + \end{array}\right.$	$\stackrel{+}{+}$	－Om－10 $1+11$	0
$\begin{array}{cc}\text {＋サOO } \\ + & \text { O0n } \\ + & 11\end{array}$	\bigcirc	moa $1+11+$	－
	－ 1	Nat Natr	－
$\begin{array}{rrrr} +\infty & -10 & -\infty & +1 \end{array}$	$\stackrel{N}{N}$	サーH NMO	$\stackrel{1}{1}$
$\left.\begin{array}{ccccc} \text { in } & 0 & \infty & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right\rvert\,$	$\stackrel{+}{1}$	$\begin{array}{cc}000 & -00 \\ 1 & 11\end{array}$	$\stackrel{1}{1}$
$\begin{array}{rrr} +0 \infty+10 u \\ 11 & 111 \end{array}$	－	$\begin{array}{cc} 10 \pi n & +\infty, 0 \\ 111 & 11+ \end{array}$	N 1
$\begin{array}{rrrr} \operatorname{ren} & \operatorname{tin} & 0 \times 1 \\ 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{ccc} m-1 & m O & 0 \\ 1 & 1 & 1 \end{array}$	N 1
	䍖		品

Hours	Mid．	1	2	3	4	5	6	7	8	9	10	11	Noon	13	14	15	16	17	18	19	20	21	22	23	Mid．	Means
（Jan．	$\stackrel{\text { r }}{\text { 991 }}$	${ }_{991}^{7}$	$\stackrel{\gamma}{990}$	7 991	¢ 990	$\stackrel{\gamma}{990}$	$\stackrel{\gamma}{990}$	$\stackrel{\gamma}{991}$	$\underset{993}{9}$	$\stackrel{\gamma}{991}$	$\underset{986}{9}$	$\mathrm{ms}^{\mathbf{\gamma}}$	9	$\stackrel{9}{989}$	$\stackrel{\gamma}{9} 9$	$\stackrel{\gamma}{991}$	$\stackrel{\gamma}{\gamma 91}$	$\stackrel{7}{989}$	$\underset{990}{ }$	$\stackrel{\gamma}{8}$	$\stackrel{\gamma}{991}$	$\stackrel{\gamma}{9}$	${ }_{9} 91$	$\stackrel{7}{991}$	$\stackrel{\gamma}{9} 9$	$\stackrel{\gamma}{990}$
Feb．	997	997	996	996	996	996	997	997	908	998	993	987	986	987	989	$9 \% 3$	995	905	906	996	996	996	997	997	997	995
馬 Mar．	1012	1012	1012	1012	1011	1011	1011	1014	1016	1012	1006	991	987	989	995	1002	1006	101\％	1008	1008	1009	1010	1011	1011	1011	1007
$=10 c$	1044	1044	1044	1043	1042	1042	1042	1047	1041	1040	1035	1034	1033	1037	1041	1043	1243	$10+2$	1043	1044	1044	1044	1114	1044	1043	1042
Nov	1043	1043	1042	1012	1042	1042	1042	1043	1043	1041	1036	1039	1038	1039	1040	1041	1043	1044	1044	1044	1044	10.4	11944	1043	1042	1142
（Dec．	1046	1046	10 ± 6	1018	1016	1046	1046	1046	1047	1048	1047	1046	1046	1046	1046	1046	1045	1046	11446	10.6	1045	1046	1145	1046	1045	1046
Means	1022	1022	1022	1022	1021	1021	1021	1023	1024	1022	1017	1014	1013	1015	1017	1019	1021	1021	1021	1022	1022	1022	1022	1022	1022	10：0
April	1022	1021	1021	1021	1021	1021	1023	1025	1023	1019	1010	998	1000	11004	1007	1013	1016	1017	1016	1017	1018	1020	1021	1021	1029	1016
May	1027	1027	1027	1027	1027	1029	1033	1031	1025	1016	1009	909	1004	1009	1014	1019	1022	1023	1024	1023	1025	1026	1026	1027	1026	1022
－Jane	1037	1037	1036	1037	1037	1089	1042	1039	1033	1025	1020	1008	10.2	1017	1020	1026	1029	1032	1032	1032	1033	1034	1035	1036	1035	1031
－Jaly	1044	1044	1046	1043	1044	1045	1049	1048	1042	1034	1027	1018	1021	1024	1030	1035	1038	1041	1041	1042	1042	1043	1043	1043	1043	1039
${ }^{\circ} \mathrm{Alng}$ ．	104：	1041	1041	1041	1040	1041	1046	1044	1038	1031	1024	10 ± 3	1023	1028	133	1037	1039	$10+1$	1039	1039	1040	1040	1040	1042	1041	1037
（Sep．	1044	1044	1048	1043	1043	1013	1045	1046	1043	1037	1029	1028	1031	1035	1039	1043	1045	1044	1043	1043	104＊	1045	1045	1045	1045	1041
Means	1036	1036	1036	1035	1035	1036	1040	1039	1034	1027	：020	1012	1015	1020	1024	1029	1032	1083	1033	1033	1034	1035	1035	1036	1035	$1031{ }^{-}$

\begin{tabular}{|c|c|c|c|}
\hline \& ¢

+ \& ¢ra
++++ \& $+$

\hline \& $\stackrel{+}{+}$ \& $\begin{array}{ll}\infty & +\infty \\ +++ \\ ++++\end{array}$ \& $\stackrel{+}{+}$

\hline \& $\stackrel{+}{+}$ \& ¢＋ヶ $+\infty+$
+++
+++ \& $+$

\hline $$
\begin{array}{cc}
+\cdots-\infty & \text { No } \\
+++ & ++
\end{array}
$$ \& －

+ \& \& $\stackrel{+}{+}$

\hline \& $\stackrel{+}{+}$ \& Nomomon
+++
+++ \& $\stackrel{+}{+}$

\hline \& N
+ \& \& －

\hline ronr
+
+ \& $+$ \& $\begin{array}{rc}\text { O－Nat } & \text { an a } \\ ++ \\ +++\end{array}$ \& +
+

\hline $$
\begin{array}{cc}
1200 & 0000 \\
1 & +
\end{array}
$$ \& $\xrightarrow[+]{+}$ \& $\begin{array}{ll}\text {－TN } & \text { N＋} \\ +++ \\ +++\end{array}$ \& $\stackrel{+}{+}$

\hline $\left\lvert\, \begin{array}{cc}-10 \rightarrow+-1 \\ +\quad 1 & ++1\end{array}\right.$ \& $+$ \& OOの
1＋＋ \& $\stackrel{+}{+}$

\hline ＋HNan
+11 \& － \& \& $\stackrel{ }{\sim}$

\hline $$
\left|\begin{array}{rcc}
-\infty & -2 & -\infty \\
+1 & 1 & 1
\end{array}\right|
$$ \& \bigcirc \& $\infty \infty$

111
1 \& 1

\hline $$
\left.\begin{array}{ccccc}
\hline x+\infty & 0 & 1 & \infty & 0 \\
1 & 1 & 1 & 1 & 1
\end{array} \right\rvert\,
$$ \& 12

1 \& \& 7

\hline $$
\begin{array}{cccc}
\hline+\infty & 0 & a+\infty \\
1 & 1 & 1 & 1
\end{array}
$$ \& 1 \& \& $\stackrel{9}{1}$

\hline $$
\left\lvert\, \begin{array}{rcccc}
+\infty & \infty & 0 & \infty & \infty \\
1 & 1 & 1 & 1 & 1
\end{array}\right.
$$ \& 0 \& の思》 \& $\frac{2}{1}$

\hline \& 0 \& \& \cdots

\hline $$
\left.\begin{array}{|cc|}
\hline-\infty & \infty-\infty \\
+++ & 1 \\
+\infty
\end{array} \right\rvert\,
$$ \& $\stackrel{+}{+}$ \& \& +

1

\hline $$
\left\lvert\, \begin{array}{cc}
\operatorname{ron} & \text { N-N } \\
+++ & +++
\end{array}\right.
$$ \& $\stackrel{+}{+}$ \& $\begin{array}{ll}\text { にのm } & \text {－－} \\ +++ \\ +++\end{array}$ \&

\hline $$
\begin{array}{cc}
\text { r-n Nr } & \text { m-o } \\
+++ & ++
\end{array}
$$ \& ∞ \& \&

\hline $$
\begin{array}{rr}
\text { rown } & 000 \\
+ &
\end{array}
$$ \& $+$ \& ース～ \&

\hline $$
\begin{array}{rr}
\mathrm{NOH} & 000 \\
+ &
\end{array}
$$ \& ＋ \& $\begin{array}{ll}\text { ローロ } & 0+\text {＋} \\ +++ & +\cdots\end{array}$ \&

\hline 10－
+

+ \& $\pm+$ \& not
+++
+++ \& +
+

\hline スーーロ－＋＋ \& +
+ \& \& ＋

\hline rann
++ \& N
+ \& $\begin{array}{ll}0000 & 0+\infty \\ +++ & +++\end{array}$ \& $+$

\hline \[
$$
\begin{array}{cc}
\text { rans } & \text { Nmo } 0 \\
+++ & ++
\end{array}
$$

\] \& | + |
| :---: |
| + | \& \& \pm

\hline $$
\left\lvert\, \begin{array}{cc}
\operatorname{ron} \omega \text { so } & \text { Nomo } \\
+++ & ++
\end{array}\right.
$$ \& －

+ \& $\begin{array}{ll}\text { OUN } & \text { かんの } \\ +++ & +++\end{array}$ \& $+$

\hline \& 䍖 \& \&

\hline
\end{tabular}

Hourly Heans of the Dip at Dehra Dun in 1921，defermined from all available days．Dip $=$ N． $45^{\circ}+$ tabular quantity．

$\begin{aligned} & \text { 若 } \\ & \text { 閸 } \end{aligned}$	co ci ci	Me	\cdots			$\stackrel{+}{+}$
룰	完	安	$\stackrel{\square}{+}$	$\begin{aligned} & m+ \\ & \dot{\phi} \end{aligned}$	$\begin{aligned} & x \\ & \text { o } 0 \text { i } \\ & \text { in is } \end{aligned}$	$\stackrel{¢}{\dot{\circ}}$
¢	\|ecr	$\infty \infty_{0}^{\infty}$ is is $\dot{\circ}$	$\stackrel{+}{\square}$	＋	an Nis 就动	\div
8	F	0 O O $\dot{\cos } \dot{0}$	$\stackrel{+}{4}$			$\stackrel{\infty}{\dot{+}}$
त	－	$\infty 0 \%$ $\dot{\oplus} \dot{\circ}$	i3	$\begin{aligned} & 109 \\ & \text { in } \end{aligned}$		$\stackrel{\infty}{\sim}$
\％			－			
$\stackrel{\square}{\sim}$	｜	? $\text { is } \dot{0}$	？	$\begin{aligned} & \underset{\sim}{\infty} \\ & \end{aligned}$		$\stackrel{x}{+}$
$\stackrel{\infty}{-}$	｜	$\begin{aligned} & \therefore \dot{O} \\ & \therefore \dot{O} \end{aligned}$	$\stackrel{+}{\square}$	$\begin{aligned} & \sim \\ & \underset{\sim}{\infty} \underset{+}{2} \end{aligned}$	$$	\square
\pm		$\infty 0 \infty$ 150	$\stackrel{\sim}{\square}$	$\stackrel{\text { ¢ }}{\text {－}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \text { is is } \end{aligned}$	3
\because			\because			$\stackrel{-}{\square}$
15	$\text { - } \vec{\sim}$	$+\infty=0$ \dot{n} is	$\stackrel{O}{\text { en }}$	$\begin{aligned} & \because \pi \\ & \therefore \dot{1} \end{aligned}$		$\stackrel{x}{x}$
\pm	－$\stackrel{\infty}{-}$	$\underset{i=1}{0} \dot{0}$	¢			\cdots
3	9	\cdots	$\stackrel{\sim}{2}$			$\stackrel{\circ}{\text { ¢ }}$
$\begin{aligned} & \overline{3} \\ & \vdots \\ & 3 \end{aligned}$	\supset	号	$\overrightarrow{\text { ¢ }}$	$\stackrel{6}{\square}$	307	$\stackrel{\square}{\square}$
こ		∞ $\rightarrow+7$ $\rightarrow+10$	？	$\begin{aligned} & +7 \\ & -8 \end{aligned}$	N：	$\stackrel{\sim}{\dot{\sim}}$
3	－		？	$\begin{aligned} & \because 9 \\ & \because 9 \end{aligned}$	$\begin{aligned} & \infty=- \\ & \dot{c}+\underset{\sim}{\circ} \text { in } \end{aligned}$	$\bar{\square}$
0	-	300 $\dot{i} \dot{i}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & 918 \\ & \hdashline \because 九+1 \end{aligned}$	$7 \% 8$ $+\therefore \%$	$\stackrel{?}{+}$
∞	¢	¢ッロ	$\stackrel{?}{-}$	$\begin{aligned} & \because 0 \\ & \therefore \therefore \therefore \therefore \end{aligned}$		$\stackrel{7}{7}$
\cdots	$\therefore \dot{\therefore} \dot{\sim}$	ーはの 	$\stackrel{\square}{\square}$		$\begin{aligned} & 0 \text { in } 0 \\ & i s i s i s \end{aligned}$	$\stackrel{7}{+}$
\cdots		18 ${ }^{4}$	$\stackrel{\square}{7}$	$\begin{aligned} & +? \\ & \hdashline \therefore \end{aligned}$	¢	$\stackrel{\square}{-}$
18	궃	吅边	\div	$\because ?$	B	$\stackrel{\square}{\square}$
＋	$\underset{\sim 1}{-1808}$		？	$\underset{\sim}{x}$		\because
\cdots	－	为	？	$\stackrel{+}{+}$	$\underset{\sim}{\sigma} \underset{\sim}{2}+$	\because
\therefore	$\begin{aligned} & \Rightarrow 100 \\ & \therefore \therefore 8 \end{aligned}$	∞ かっ ט力	\because	$\begin{aligned} & 104 \\ & \hdashline-7 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { in } \end{aligned}$	$\stackrel{7}{7}$
－	$\therefore \dot{\therefore} \dot{\therefore}$	$\infty \rightarrow+$ 0\％	$\stackrel{\%}{+}$	$\begin{aligned} & 10+ \\ & \dot{\sim}+ \end{aligned}$	$\begin{aligned} & \because 7 \% \\ & \hdashline 10 \text { in } \end{aligned}$	$\stackrel{\infty}{\square}$
ジ	∞ u m内人்	カアッ is is	$\stackrel{+}{+}$	$\begin{aligned} & +\underset{\sim}{+} \\ & \dot{-} \end{aligned}$	$\begin{aligned} & \infty \text { n in } \\ & \text { in is in } \end{aligned}$	$\stackrel{-}{\square}$
$\begin{aligned} & \text { 蓡 } \\ & \text { a } \end{aligned}$		cici	第			䂸

		$\begin{aligned} & \dot{\oplus} \\ & \dot{\sim} \end{aligned}$	（1）	－
家		$\left\|\begin{array}{l} \dot{\infty} \\ \dot{\theta} \end{array}\right\|$	 	－
\％		$\left\lvert\,\right.$	Ome Tor 	$\stackrel{\oplus}{0}$
\％	بロッ ー～ロ 	$\begin{array}{r} 0 \\ \vdots \\ \vdots \end{array}$	○かに かにの 	$\stackrel{\circ}{\text { i }}$
ล		$\begin{aligned} & \hline \infty \\ & \infty \\ & \dot{\sim} \mid \end{aligned}$	－0ッ～に禺品然思 合合会	$\stackrel{\circ}{1}$
－	－	$\left\|\begin{array}{l} 1-1 \\ \vdots \end{array}\right\|$	 	$\stackrel{+}{\text { ¢ }}$
$\stackrel{1}{9}$		$\stackrel{\text { ¢ }}{\square}$		$\stackrel{+}{-}$
$\stackrel{\sim}{\sim}$		$1 \begin{aligned} & 1 \\ & \dot{n} \end{aligned}$	－0＋Not 	－
I	से	菏		号
\because	 	$\stackrel{\rightharpoonup}{\dot{\omega}}$		－
：		莎		－
\pm		$\left\|\begin{array}{c} \underset{\sim}{*} \end{array}\right\|$		｜
$\stackrel{2}{2}$	－羂路	$\left\lvert\, \begin{gathered} + \\ \dot{H} \end{gathered}\right.$	cos nerm以ֹCixi	｜lor
$\begin{aligned} & \text { 号 } \\ & \text { 号 } \end{aligned}$	－＋＋O O		かの一 \rightarrow の 	管
7	HF－「OM	$\left\|\begin{array}{l} \dot{\theta} \\ \dot{\theta} \end{array}\right\|$		－
9	$r=0 \Rightarrow$－\rightarrow 	$\left\|\begin{array}{l} \dot{\ddot{\theta}} \mathrm{B} \end{array}\right\|$	 	荌
∞	$\rightarrow \infty \quad+1=x$ 			$\stackrel{\sim}{*}$
∞		$\left\|\begin{array}{l} \dot{\oplus} \\ \hline \end{array}\right\|$		$\stackrel{\sim}{+}$
－	$0 \infty 410 \rightarrow-\infty$ 	$\stackrel{F}{4}$		$\stackrel{\square}{\square}$
\cdots	Cor 	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{\alpha}} \end{array}\right\|$		＋
\sim		$\begin{array}{\|c} \hat{N} \\ \dot{B} \end{array}$		$\stackrel{*}{0}$
＋		$\begin{array}{\|c\|} \hline i \\ i \end{array}$		－
∞		$\left\|\begin{array}{c} \dot{9} \\ \dot{9} \end{array}\right\|$		令
\cdots		$\left\|\begin{array}{\|c\|} \infty \\ \dot{8} \end{array}\right\|$		＋
\cdots		$\left\|\begin{array}{l} \infty \\ \dot{\sim} \end{array}\right\|$		兑
Z		$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\leftrightarrow}{\dot{E}} \end{gathered}\right.$		
㓪		晨		妣

\begin{tabular}{|c|c|c|c|}
\hline \& \(\stackrel{\rightharpoonup}{\text { ¢ }}\) \& \& \(\stackrel{i}{i}\) \\
\hline ｜ror \& ¢ \& Non \& ¢ \\
\hline － \& \(\stackrel{\circ}{\circ}\) \& mot \& i \\
\hline \& \[
\begin{aligned}
\& 7 \\
\& \stackrel{+}{+}
\end{aligned}
\] \& iii ioi \& \(\stackrel{+}{\circ}\) \\
\hline （1） \& \[
\begin{aligned}
\& 9 \\
\& \stackrel{9}{\circ} \\
\& +
\end{aligned}
\] \& \& － \\
\hline （1） \& \[
\begin{aligned}
\& \mathrm{O} \\
\& \mathrm{o}
\end{aligned}
\] \& －\(+\boldsymbol{t}\) 잉ㅇ io \& － \\
\hline \& \[
\stackrel{\ddot{\circ}}{\stackrel{+}{+}}
\] \& ＋ \& \(\stackrel{7}{i}\) \\
\hline \& \[
\begin{aligned}
\& 0 \\
\& \stackrel{0}{+} \\
\& +
\end{aligned}
\] \& － \& \(\stackrel{\square}{+}\) \\
\hline \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& + \\
\& +
\end{aligned}
\] \& \& \(\stackrel{\%}{i}\) \\
\hline \& \(\bigcirc\) \& 込 \& \(\stackrel{\stackrel{1}{-}}{\square}\) \\
\hline \& \[
\begin{aligned}
\& \text { + } \\
\& \dot{i}
\end{aligned}
\] \& \& \(\stackrel{\sim}{1}\) \\
\hline \& \[
1 \begin{aligned}
\& 0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& ¢ọ \& \(\stackrel{+}{\square}\) \\
\hline \& \[
1 \begin{aligned}
\& 7 \\
\& 0 \\
\& i
\end{aligned}
\] \& \& \(\stackrel{\sim}{\top}\) \\
\hline \& \(\stackrel{\circ}{\circ}\) \& \& i \\
\hline \& \[
\begin{aligned}
\& \text { } \\
\& \stackrel{0}{+}
\end{aligned}
\] \& \& \\
\hline \& \[
\begin{aligned}
\& \hline \stackrel{\circ}{+} \\
\& +
\end{aligned}
\] \& \& \(\stackrel{+}{+}\) \\
\hline \& \[
\begin{aligned}
\& \stackrel{\infty}{+} \\
\& + \\
\& \hline
\end{aligned}
\] \& \& \\
\hline \& \[
\begin{aligned}
\& 0.8 \\
\& i \\
\& i
\end{aligned}
\] \& \& \(\stackrel{\text {－}}{\substack{\text {＋} \\+ \\ \hline}}\) \\
\hline \& \[
\left\lvert\, \begin{aligned}
\& \text { ol } \\
\& \hline 1
\end{aligned}\right.
\] \& \& \(\stackrel{+}{+}\) \\
\hline \& \[
\left\lvert\, \begin{aligned}
\& \text { o } \\
\& i \\
\& i
\end{aligned}\right.
\] \& \& \(\stackrel{+}{+}\) \\
\hline \& \[
\vec{i}
\] \& \& \begin{tabular}{l}
¢ \\
+ \\
+ \\
+ \\
\hline
\end{tabular} \\
\hline \& ¢ \& \& ＋ \\
\hline － \& \[
\overline{\dot{+}}
\] \& merr \& +
+
+
+
+

+

\hline \& $$
\begin{aligned}
& \vec{\vdots} \\
& +
\end{aligned}
$$ \& กッ（ Non $\stackrel{\circ}{+}+\underset{+}{\circ}+1$ \& －

\hline \& $\xrightarrow{+}$ \& ＋ \& \bigcirc

\hline \& 易 \& \& 总

\hline
\end{tabular}

	曾		占		E
，	㒸		$\stackrel{\rightharpoonup}{2}$		$\stackrel{1}{5}$
	\％		三		？
	$\stackrel{1}{2}$		안		㫛
	－		앙		E
	\square		$\stackrel{9}{2}$		\％
析	$\stackrel{\square}{\square}$		\％		翌
	$\stackrel{\square}{\square}$		\％		哭
	－		家		号
	$\stackrel{-}{2}$		号		号
	2		亏		\％
	\pm		\％		\％
	\cdots		안		\％\％
	\％		\％		䯸
	\square		당		\％
	2		\％${ }_{3}$		S
	\cdots		？		\％
	ω		안		\％
	－		영		\％
	－		E		9
	\pm		E	F晏只 號云	：
	－		간		号
	\cdots	－	$1:$		家
	\cdots	－	İ		号
－	－	锨認	F		？
＊	号		三		$\stackrel{\square}{2}$
앙	吕		－		冎

Notre，- When the sign is + ibe V．F．is greater，and when - it it lest than the mand，

（en	$\begin{aligned} & \hline 0 \\ & \stackrel{0}{+} \\ & \hline \end{aligned}$	Wenctor	$\begin{array}{r}+ \\ + \\ + \\ + \\ \hline\end{array}$
（ers	－		＋
	$\begin{aligned} & 8 \\ & \vdots \\ & + \end{aligned}$		＋
	$\begin{aligned} & \because 0 \\ & + \\ & + \end{aligned}$		+ \vdots +
（ext	$\begin{aligned} & 10 \\ & \stackrel{0}{+} \end{aligned}$		＋
（en	$\begin{aligned} & \ddot{+} \\ & \stackrel{+}{+} \end{aligned}$	＋107	$\stackrel{+}{+}$
	\|o	＋074	－
－	$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{+}{+}$
（1）	$\stackrel{\rightharpoonup}{\dot{o}}$		＋
－NM Fom	\dot{i}	NHTNON io $1+1$ ic	$\stackrel{\circ}{\circ}$
	$\left\lvert\, \begin{aligned} & \infty \\ & i \\ & i \end{aligned}\right.$	$\begin{array}{rl} -0 & 0010 \\ =10 & 0 \\ 10 \\ 10 \end{array} 1$	－
（1000	$\stackrel{\stackrel{\rightharpoonup}{\square}}{\square}$		$\stackrel{\square}{\square}$
＋o゚＊	$\stackrel{\square}{1}$		$\stackrel{\square}{\square}$
$\xrightarrow{\varphi+\sim}$	$\mid \stackrel{\hookrightarrow}{\leftrightarrows}$		$\stackrel{\oplus}{\text { ¢ }}$
	$\stackrel{\underset{1}{7}}{\square}$		$\stackrel{+}{\square}$
	$\begin{aligned} & \hline 0 \\ & i \\ & \hline \end{aligned}$		$\stackrel{\square}{1}$
	－		$\stackrel{7}{i}$
（tar	$\left\lvert\, \begin{aligned} & \text { O} \\ & \hline \\ & \hline \end{aligned}\right.$		｜
	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$		+ 0 + +
 	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dagger} \\ & + \end{aligned}$		$\begin{array}{r}+ \\ + \\ + \\ + \\ \hline\end{array}$
	$\begin{aligned} & +\dot{\circ} \\ & + \end{aligned}$		＋ + +
	$\begin{aligned} & \text { "O } \\ & + \end{aligned}$		+ + + +
	$\begin{aligned} & \ddot{\circ} \\ & \stackrel{0}{+} \end{aligned}$		$\stackrel{+}{\square}$
品品家 $+++\quad+++$	$\begin{aligned} & \text { B } \\ & \stackrel{0}{+} \end{aligned}$		－
（entom	$\begin{aligned} & \stackrel{\circ}{+} \\ & + \end{aligned}$		－
	最		$\stackrel{0}{0}$

Hourly Means of tho Deslination at Kodaikanal in 1921，tiefermined from all avallable days．Declination $=W .1^{\circ}+$ tabular quantity．

多		$\begin{aligned} & \text { İ } \\ & \text { id } \end{aligned}$	ローががット 	＋
3		$\underset{\sim}{4}$		＋
8	 	$\begin{aligned} & \hline 1 \\ & \text { in } \end{aligned}$		－
习	－Nがーが 	$\stackrel{N}{\text { N }}$		1080
ล		$\stackrel{\rightharpoonup}{5}$		－
\％		$\begin{aligned} & \text { i } \\ & \text { it } \end{aligned}$		$\stackrel{0}{4}$
2		$\begin{aligned} & \circ \\ & \text { it } \end{aligned}$		$\stackrel{\sim}{4}$
$\stackrel{\infty}{\sim}$		$\begin{aligned} & \hline \stackrel{+}{0} \\ & \text { it } \end{aligned}$		$\overrightarrow{+}$
－		$\begin{aligned} & \infty \\ & \dot{\tilde{i}} \\ & \hline \end{aligned}$		$\stackrel{\circ}{\square}$
9	かのー 91 	10		N
$\stackrel{1}{2}$	○かッ 0 On 	$\begin{aligned} & \underset{\sim}{\mathrm{B}} \\ & \stackrel{\rightharpoonup}{\mathrm{~B}} \end{aligned}$		菏
\pm		$\stackrel{\vdots}{\vdots}$		－
m		$\begin{aligned} & \text { O} \\ & \underset{i}{+} \end{aligned}$		？
$\begin{aligned} & \text { 드́ } \\ & 0 \end{aligned}$	\|			－
$=$		$\begin{array}{r} \because \\ \stackrel{\rightharpoonup}{n} \\ \end{array}$		$\stackrel{\rightharpoonup}{\text { in }}$
\subseteq	-0N日 -	$\underset{\sim}{0}$		$\stackrel{+}{7}$
σ		$\underset{\underset{i}{*}}{\ddagger}$	のため にmo 	$\stackrel{\square}{8}$
\times		$\underset{\sim 1}{\stackrel{1}{*}}$		会
－	－1010＋＋00 	$\begin{aligned} & \because \\ & \stackrel{+}{+} \end{aligned}$	بかに 1－9 	10
\star		$\stackrel{\oplus}{+}$		$\stackrel{\sim}{\text { in }}$
\because		$\stackrel{+}{4}$		－
＋		$\stackrel{+}{+}$		$\stackrel{\text { J }}{\text { \％}}$
\cdots		$\begin{gathered} 9 \\ \stackrel{9}{10} \end{gathered}$		－
${ }^{1}$	∞ का 	$\stackrel{N}{\underset{1}{2}}$		$\stackrel{\circ}{\underset{\circ}{\circ}}$
－		$\underset{i}{N}$		¢
Oٍِ		$\overrightarrow{\vec{i}}$	ポーッ M M N 	$\stackrel{\text { N }}{\text { ¢ }}$
䓵		㛯		覅

	园		\％		${ }_{\sim}^{\circ}$
	$\underset{y}{3}$		$\stackrel{¢}{8}$		$\stackrel{+}{\infty}$
	\％		$\stackrel{\infty}{\infty}$		$\stackrel{m}{\infty}$
			$\frac{\infty}{x}$	요유융	밖
	ล		$\stackrel{\infty}{\infty}$	－	砋
	9	入号䍖言 気	$\left.\frac{9}{x} \right\rvert\,$	安㖴产	$\stackrel{3}{0}$
	$\stackrel{9}{3}$	－	㽣		$\underset{\sim}{4}$
	$\stackrel{\sim}{\sim}$	入－	＊		$\stackrel{\square}{\infty}$
	$\stackrel{ }{=}$	入気禹岗	－		$\frac{13}{6}$
	\because		产		\％
	12		钲		\％
	\pm		$\stackrel{9}{+}$		9
	\cong		这		\％
	蘦		$\frac{x}{x}$		8
	$=$		觟		年
	\bigcirc		号		
	\cdots		僉		$\bar{\square}$
	\cdots		\％	罗碎気	\％
	$1-$		$1{ }^{\text {\％}}$		管
	$=$		$\stackrel{7}{6}$		－
	\cdots		\％		令
	＋		简		\％
	\cdots		交		$\stackrel{8}{6}$
	\because		$\stackrel{\text { 可 }}{ }$		$\stackrel{+}{\square}$
	－		$\stackrel{\rightharpoonup}{x}$		$\underset{\sim}{*}$
	良		$\stackrel{\sim}{\infty}$		$\frac{1}{\alpha}$
	$\stackrel{\text { ¢08 }}{\text { ¢ }}$		$\stackrel{\text { 关 }}{\text { ¢ }}$		

	$\stackrel{\text { eng }}{\text { ¢ }}$		\％		
	家		荌		
	$\stackrel{\square}{\square}$	－	管		
	$\stackrel{3}{1}$		${ }^{\text {i }}$	－	
	－	\cdots－${ }^{\text {¢ }}$	写	㤩昜等	
	ส	\cdots	感		
	\pm	\cdots 全景	\％	－	
	$\stackrel{\sim}{2}$	\bigcirc	$\stackrel{\infty}{\underline{D}}$	笭第	號
	1	，	䘧	穾㟺号 8	是
	9	－	管	＝＝3	8
	19	0 －	言		$\stackrel{?}{3}$
	\pm		豆	㖪	\％
	$\stackrel{3}{\square}$	－¢ き	\％	－	\％
	$\overline{8}$	${ }^{\circ}$	\％		\％
	$=$	＇答	佥	0 －${ }^{\circ}$	\％
	\because	－${ }^{\text {笭 }}$	8		$\bar{\square}$
	σ		\％		\％
	∞	入＇，䈁	\％	E゙ちも	笑
	$1-$	－	$\stackrel{7}{8}$		榢
	\bullet		：	动號	3
	\therefore	－	$\stackrel{\rightharpoonup}{5}$		\％
	＊		$\stackrel{3}{5}$		－
	∞		$\stackrel{7}{6}$		항
	\because		荅		¢
	－		$\stackrel{t}{6}$		3
	\＃		i88		$\stackrel{\square}{\bullet}$
	$\begin{aligned} & \text { 皆 } \\ & \text { O} \end{aligned}$		号		欹

	$\stackrel{+}{+}$		$\stackrel{+}{+}$
$\begin{array}{cc}\text {＋0cos } & \text { n＋}+0 \\ +++ & +++\end{array}$	$\stackrel{+}{+}$	$\begin{array}{ll}\text {＋10 } & \text { ator } \\ +++ \\ +++\end{array}$	${ }^{\circ}+$
＋＋－＋－\％ +++	$+$	$\begin{array}{ll}1-0: 0 & -8: 8 \\ +++ & +++\end{array}$	$\left\lvert\, \begin{aligned} & 10 \\ & +\end{aligned}\right.$
	∞ +	$\begin{array}{cc}\text { ¢0：} & 0+4 \\ +++ & ++\end{array}$	$\stackrel{+}{+}$
	$\stackrel{+}{+}$	$\begin{array}{cc}\infty \infty-\infty \\ +++ & \text {－}+ \text {＋}\end{array}$	$\stackrel{+}{+}$
	－	－－ハーロ	－
		$\begin{array}{ll}-7- \\ ++1 & \text {－}\end{array}$	＋
$\left\lvert\, \begin{array}{ccc} \therefore N=1- & 0+\infty \\ 1 & 1 & 1 \end{array}\right.$	\cdots	$-\infty-\infty-$ +++ +++	$\stackrel{+}{3}+$
$\left.\begin{array}{\|cccc} \hline-n & 01 & +\infty & 0 \\ 1 & 1 & 1 & 1 \end{array} \right\rvert\,$	\cdots	arct－00 +++	$\stackrel{+}{+}$
	\cdots		\cdots
$\begin{array}{rlll} +\infty & 0 \\ 1 & 1 & 1 & 0 \end{array}$	$\stackrel{1}{1}$		2
$\begin{array}{rrrrr} \therefore-0 & 0 & \because 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$	\cdots		\pm
	$\stackrel{1}{1}$		$\stackrel{\square}{1}$
	$\stackrel{1}{1}$	－，93	$\stackrel{\infty}{1}$
$\left\lvert\, \begin{array}{rl} +\infty & =x \\ 1 & 1 \\ \text { Nan } \end{array}\right.$	∞	$=\underset{1}{1} \frac{\pi}{1}$	\because
$\begin{array}{\|c} 1+\infty-\bar{n} \\ 1+1+1 \end{array}$	$\begin{gathered} \mathrm{N} \\ 1 \end{gathered}$		0
$\begin{aligned} \text { rasen } & \text { थnon } \\ +++ & +++ \end{aligned}$	+ + +		$\stackrel{\infty}{+}$
$\begin{aligned} x+\infty & \infty \infty \infty \\ +++ & +++ \end{aligned}$	$\stackrel{+}{+}$		\bigcirc
$\begin{array}{ll} \gamma \infty \infty \pi & \infty \infty \in \\ +++ & +++ \end{array}$	$\stackrel{+}{+}$		7
	$\stackrel{+}{+}$	$\infty 000$ +++ +++	∞ +
	- +	$\begin{array}{ll}\text {－co } & + \text {＋} \\ +++ & +++\end{array}$	\cdots
$\begin{array}{cc} \text { r } \infty \text { 人 } & \infty \times+ \\ +++ & +++ \end{array}$	\cdots	$\begin{array}{ll}\infty-0 & 0 \sim \infty \\ +++ & +++\end{array}$	＋ + +
$\begin{aligned} x-\infty & \text { al } 30 \\ +++ & +++ \end{aligned}$	$\stackrel{+}{+}$		$\stackrel{+}{+}$
$\begin{array}{cc} \text { r- }-\infty & 1-\infty+ \\ +++ & +++ \end{array}$	$\stackrel{1}{+}$	$\begin{array}{ll}\text {－1－0 } & \infty \\ +++ \\ +++\end{array}$	$\stackrel{+}{+}$
$\begin{aligned} \lambda \omega 0 \infty & 0 \infty \infty \\ +++ & +++ \end{aligned}$	$+$	$\begin{array}{ll}\infty \text { 上－} & +\sim+ \\ +++ & +++\end{array}$	$\stackrel{+}{+}$
			$\stackrel{\text { 厛 }}{\text { ¢ }}$

By Major C. M. Thompson, I. A.
 Computing Section.

PERSONEL.

Class I Officers
Dr. J. do Gruaff IIunter, M. A., Sc. IJ, F. Inst. P. in chargo till 29 th March 1922.
Captain E. A. Glennio, D. S. O., K. E., in cburge from 30th March to 9th May 1922.
Major C. M. Thompson, I. A., in charge from 10 th May 10:2.

Computing Offer
 Mesd Computer

Kai Sahib Ishan Chandru Mova, B. A., till :10th Junu 1922 . wheu ho retired.
Babu Makandananta Achrya from 1sl July 1922.
19 Senior and \ddagger lunior Computers.
In addition 13 Computers from parties worked during in port on of the yene.

Isoslasy.-The only contribution on this subject to be recorded in this report was the publication of Survey of India Professional Paper No. 18 by Lt.-Col. H. McC. Cowie, R. E., entitled "A criticism of Mr. R. D. Oldham's Memoir-' The Structure of the Himālayas and of the Gangetic Plain, as elucidated by Geodetic Observations iii India'."

Computations.-The following computations were carried out during the year:-
(1) Data were compiled for the prediction of tides for 1923 by means of the tidal machine for 40 ports. In addition, the actual preparation of the tide-tables for 9 riverain ports, included in the above, was undertaken in this office. The work of computer Manmatha Nath Chattarji is specially wortly of mention, in connection with the tide-preliction for the riverain ports.
(b) The reduction of the observations for latitude at 4 stations in Kashmirr by Mt.- Major K. Mason, M. C., R. E., is in hand.
(r) 'The astronomical latitudes observel by Major H. 'I. Morshead, D. S. O., IR. E., at 'lhakurganj and Dund:ugi were checkel and computed with a view to an investigation into the gravitational effects at these stations.
(d) The triangulation executed by Bt.- Major E. O. Wheeler, M. C., R. E., during the liverest expedition was reducel.
(r) Corrections to latitule, longitude, azimuth and logsides derived from the adjustment of the pendent portion of the Burma Coast Series were computed.
(f^{\prime}) For purposes of investigation the topographical effects for 59 pendulum stations, of which the Harford corrections have been published in Protessional Paper 15, pages 176-178, have been separated from the compensation effeets.
(1) Seven tables, in aldition to the 23 mentioned in Records Volume XVI were computed to complete Luxiliary Tables Part III (5th Edition).

Adjustments.-
(a) The adjustment of the minor triangulation falling in degree sheets 39 A and 39 E , N. W. Frontier, was taken in hand, in accordance with the new method devised by Dr. Hunter.
(b) The minor triangulation connecting the Madras Longitudinal Series with the Cudlapah Series was adjusted in compliance with a request from the Superintendent, Southern Circle.
(c) Curves were prepared for the graphical adjustment of triangulation falling in shects !2 ($), 1$, and $\left(\frac{1}{2}\right.$, and furnished to the Superintendent, Eastem Circle.

Misce/lancous.-
(11) A report was compiled for submission at the first General Conference (Geodetic) held at Rome in April 1922.
(b) Rectangular Co-ordinates were computed from the splerical co-ordinates for the traverse stations in (Gorakhpur Cantonment.
(r) Latitule, longitude and azimuth were computed for a number of stations in order to complete the records of Captain Deasy's exploration work of 1896 and 1897-98.
(d) Further computations in eontinuation of those noted in Records Volume XVI were carried out with a view to investigating the formule for barometric heights.
(c) The times of sunset and sumrise for latitudes varying between 8° and 33° were computed in compliance with an extra departmental requisition.
(f) Data were computed for the preparation of a slide rule by the Mathematical Instrument Ollice, Calcutta.
(g) The Theoretical Value of gravity (γ) for F'yzäbād was computed.

Iriunyulation Pamphlets. -60 pamphlets were printed and 50 issued durigg the year. Pamphlets for 75 sheets were compiled and those for 58 sheets were compared. Compilation is in progress with a view to publishing the resulte of the Mesopotamian triangulation in supplementary pamphlets.

Levelling.-
(a) A first edition of levelling pamphlet 62 has been published.
(b) A large number of supplementary slips containing the additional work of season 1900-2l have been printed for incorporation in the existing pamphlets $34,35,39,40,45,47$, 54, 54 and 72.
(c) A reprint of levelling pamphlet 63 having been called for, on account of important revisions as well as additional new work in that sheet, a corrected 2nd edition has been preparell and is at press.
(d) The pamphlet of Levelling of Precision in Mesopotamia is under reprint.

Revision.-
(a) Part III of the Auxiliary Tables, 5 th edition 1922 (revised and extended), has been completed and a small edition printed. A number of tables have also been prepared for Part IV (Geodetic) of the same.
(b) Chapter III (1914) of the Hand-book of Topography, the revision of which has been held over owing to many important changes, is now almost completed, and the draft nearly ready for the press. There may be further delay in the publication of this clapter owing to pressure of work in the printing office.
(c) The remodelling of professional forms is in steady progress. 11 'Tonoo., 3 Lat. and 4 Lat. have been revised in addition to 19 forms noted in last year's report. A new resection form 26 Topo. is at press.

Requisitions.-279 requisitions for data were received from departmental and nondepartmental officials. In some cases these requisitions were met by the supply of printed publications, in others it was necessary to extract the required information from manuscript' records.

Printing Section,

Pensonnel.

Upper Subordinato Service.
Mr. Surat Kumar Mukerji.
1 Absistant Supervisor.
1 Compuier.
2 Clerizs.
29 Compositors.
7 Distributers.
3 Pressmen.
3 Pressmen.
1 Stereotyper.
1 Stereotyper.
8 Machine Printers.
6 Makmen.
1 Holler moulder.
13 Book-lbinders.

The following were printed in the course of the year:-

Vol. XV (1919-20) of the Records of the Survey of India; Mermoir on the Maps of Chinese Turkistān and Kansu (Sir A. Stein, K.C.I.E.), to be published as a Records Vol.; Explorations in the Eastern Karakoram and the Upper Yäkand Valley (Lt.-Col. H. Wood, R.E.), to be published as a Miscellaneous Paper; Tide Tables for Indian Ports 1923; 60 Triangulation Pamphiets; Levelling Pamphlet No. 62, and addenda or slips to Pamphlets Nos. 34, 35, 39, $40,45,47$, 53, 54 and 72 ; Auxiliary Tables Part III; Appendix to Levelling of Precision; The AutoStereo Plotter, a translation from the French of Paul Corbin (Lt.-Col. H. McC. Cowie, R.E.), to be published as a Departmental Paper (incomplete); Note on the stage reached by the Geodetic Operations of the Survey of India in 1920 (Lt.-Col. H. McC. Cowie, R.E.).

A beginning has also been made on the Records Vol. (1920-21), Topo. Hand-book, Chapter II (revised), Author's Catalogue of Books of Trig. Survey Office Library.

In addition to the above many thousands of copies of Professional and other forms together with much miscellaneous work have been printed.

In the Book-binding Section the work dealt with comprises 300 copies of Survey Records Vol. XV ; Tide Tables, Indian Ports 1923, Part I, 850 copies: Part II 220 copies (out of 980 copies); Tidal Pamphlets $1923,1,450$ copies (out of 2,930 copics); 3,700 Triangulation Pamphlets; 400 Levelling Pamphlets; $2(0)$ Auxiliary 'Tables, Part III; 650 copies of miscellaneous publications and Library books.

Workshop.

The workshop was principally occupied du-

Prrsonnet,
Class JI Offecer.
Mai Sähib Hanaman Prasad.
1 Head Artificer.
$2 C$ filters and carpenters.
ring the year on the following :-
(i) Repairs to the 'Tide-Predicting Machine and other Scientilic instruments of the department. Repairs to wool work of the office buildings in general and furnitures of the 'Trigonometrical oflices and Parties.
(ii) Erection of racks and almirahs in the Computing and Photo-Zinco oflices, and of galvanised iron tanks for water supply to the Photo-Zinco office, construction of pack ing cases and overhauling of apparatus for photo work for the Mount Everest lixpedition, and also other miscellaneous work for the different sections of the 'Trigonometrical Survey.

Observatories.

Secismography and Meteorolay!.-The Omori Seismograph was in operation throughout the year and the usual daily meteorological observations were made. The Photo-helio observatory continued its work as in past years. The following statements show the earthquakes recorded and the number of days on which solar photograplis were taken.

1. Statement of carthquakes recorded during the year 1921-22.

No.	Moath and Date.	Time of beqimany (corrected)		Daralion.	Distance of lipircuire.		llemanks. Intensily \&
		Dehra.			Delira.	$\left.\underset{(\operatorname{froum} W . \mathrm{I} .}{ } \operatorname{sim}^{*}\right)$	
		hrs m/s	hrs mhts	m	miles	miles	
1	15-10-21	2216	2219	34	500	500	Medium.
2	8-11-21	9139	2243	45	3,185	2,500	Moderate.
3	11-11-21	650	650	20	280	200	Slight.
4	12-11-21	014	\ldots	85	2,100	\ldots	Great.
5	16-11-21	209	$\underline{0} 09$	84	200	2.50	"
6	17-1-22	940	940	81	4,970	5,000	Moderate.
7	1-2-22	1912	1913	73	6,300	5,000	"
8	30. 7-29	157 f	\ldots	112	70	\ldots	Slight.
9	13-8-22	547	548	40	3,000	3,000	Moderate.
10	17-8-22	555	\ldots	11	280	\ldots	"
11	26-8-22	103	105	30	1,600	1,500	"
12	2. 9-22	0 \% 4	054	68	3,000	3,000	Great.
13	15-9-22	111	111	43	3,4:30	3,000	Moderate.

* W. R. menns Daily Weather Report published at Eimln.

2. Statement showing the number of days on which solar photographs were tuken during the year 1921-22.

Mouth.	No. of dhys.	8" Negatives.		12" Negntives.		No. of days on which sun was invisible.	Mouth,	No. of dings.	S" Negntives.		$12^{\prime \prime}$ Negntires.		No. of days on which 6un was invisible.
		Good.	Dud.	Good,	Bud.				Good.	Bud.	Good,	Bnd.	
October ...	30	56	6	\cdots	\cdots	1	April ...	2 H	43	6	2
November ...	28	49	6	\cdots	\ldots	2	May ...	28	49	6	-	\ldots	3
December ...	24	38	5	7	June ...	23	37	5	\cdots	\ldots	7
Tnnuary ...	22	36	G	'.'	\cdots	9	July ...	16	21	3	\ldots	'.	15
February ...	19	33	5	\ldots	\ldots	9	Augnst ...	10	15	2	\ldots	\ldots	21
March ...	20	16	6	...	\ldots	5	September...	21	40	4	\cdots	\ldots	0
							'Totnl ...	275	463	60	\cdots	...	90

PART III.-SPECIAL REPORTS.

TRAVERSE SURVEY OF ALLAHĀBĀD CITY.

By D.C. Puri.

The traversing of the remaining municipal areas of the city of Allahābād, commenced in 1920-21, was continued on the 1st December 1921 and completed in February 1922.

A preliminary reconnaissance was carried out by Mr. Puri and by the two traversers. Lieut.-Colonel S.W.S. Hamilton, D.S.O., R.E., inspected the area on the 1st December and discussed the work with the Chief Engiweer.

The whole of the area north of Canning Road and the Fort Cantonment was first surrounded by a main traverse, commencing from Fort Cantonment boundary pillar No. 38 and closing on traverse station No. 330 of last year's work. This main circuit takes in the whole of the area except a small portion west of Stanley Hoad, which was surrounded by an exterior block.

The main circuit was then cut up into 4 blocks Nos. 5, 6, 7 and $8 ; 5$ and 6 being the areas Däraganj and Katra Colonelganj respectively, to be surveyed on the sixty-four-inch scale, while Nos. 7 and 8 are for survey on the sixteen-inch scale.

In blocks Nos. © and 6, sub-traverses were run along nearly every street and road in the area, while in the case of blocks Nos. 7 and 8 enough sub-traverses were run to provide the detail surveyors with ample data on which to base their work.

On the completion of this area the Chief Engineer asked for some additional subtraverses in the area done last year, where the plane-tablers were finding difficulty with the points. Consequently, about 20 small lines were run, with total of 156 stations and $4 \cdot 05$ linear miles of chaining.

The Chairman of the Improvement Trust had also asked for a traverse in the Naini area south of the river and a small area south-west of the city. This too was taken in hand as it was thought desirable to finish all possible traverse work in Allahäbad now and so avoid the expense of further visits in the near future. For this purpose a main circuit was run, round this area, from a point of last year's traverse, west of Rūprajjpur, on the railway line, and south-west of the New Cantonment, to a point near the Jumna bridge, where it was connected by a triangle with the traverse ou the other bank of the Jumna river, done last year. After this on sub-traverses were run through this area.

For method, measurements, etc., the same precautions were taken as in 1920-21 and the same traversers were employed.

This year no off-sets were taken, as it was found that those taken last year were not made use of in any way by the detail surveyors employed by the Trust and their measurement was therefore a waste of time.

The computations were carried out pari passu with the traverse in the field by 2 computers. All co-ordinates also were worked out so that no further work was left to be done in recess.

21 plot charts for Katra and Colonelganj for the sisty-four-inch survey were urgently asked for by the Chief Engineer while in the field. All these were therefore completed by Mr. D. C. Puri while at Allahãbād in February 1922. These were again checked by the computers and handed over to the Chief Engineer. The renaining plot charts, viz., 9 for the sixty-four-inch survey and 44 for the sixteen-inch survey, have been completed in Mnssoorie during the recess season and together with the computations have been despatched to the Chief Eugineer.

The total number of linear miles chaining done this year for area to be surveyed on the sixty-four-inch scale was $31 \cdot 30$, while the number of stations at which the theodolite was set up was 623 . Also $4 \cdot 05$ linear miles and 156 stations were done in last year's work, while the number of stations and linear miles for the sixteen-inch was 514 stations and $78 \cdot 34$ linear miles, making a total of $113 \cdot 69$ linear miles and 1,293 stations of observation. The average angular error is 2 seconds per angle and the linear error per 1,000 feet is $0 \cdot 18$.

SETTLEMENT OF THE BOUNDARY BETWEEN MYSORE STATE AND THE SOUTH KANARA DISTRICT OF THE MADRAS PRESIDENCY.

By V. W. Monton.
The settlement and demarcation of the boundary line was continued from the last season's work and the following officers were deputed on the 1st December 1921,-

Mr. T. Hanumantha Rao, representing the Mysore Durbar.
," K. Raman Nayar, ", Madras Government.
, J. O'B. Donaghey, Survey of India officer.
Scope of teork.-The Survey officer was responsible for determining the position of the boundary line as previously fixed and described by boundary commissioners in 1880.81 and $1904-06$.

Field work completed.-Field work was commenced at Gundia on the 5th January 1922. Owing to the serious illness of Mr. Donaghey, he was replaced by Mr. V. W. Morton, as Survey of India officer on the 131h February 1922.

About 61 miles (measured on the map) of boundary were finaliy settled during the season, making a total length of 85 miles settled up to date. The rains which set in on the 18th April eventually made conditions impossible for coolies in forest camps, so that field work had to be closed on the 23rd April, leaving about 115 miles of boundary still to be completed. The demarcation work was carried out by the erection of cairns serially numbered on stones placed on the top of the cairns or on rocks "in sitn." The line was cleared where it passed through forest areas.

The survey establishment consisted of one surveyor, one forester, one clerk and 19 menials.

Records.-A survey record of the boundary was prepared on the sheets of the Madras forest survey on the scale of 4 inches $=1$ mile and a descriptive memorandum of the line was kept up. The records of the detachment are lodged in the Southern Circle Office.

Future programme.-It has been decided that the work will not be contiuned during season 1922-23, owing to financial reasons, but will in all probability be resumed in the 1923-24 season.

NOTES ON THE REVISION SURVEY IN THE NEIGHBOURHOOD OF POONA.
 By Lieut.-Colonel M. O' C. Tandy, D. S. O., O. B. E., R. E.

1. The area surveyed varied considerably, on the west it included portions of the Western Ghäts and the fairly high spurs extending eastwards from them, while on the east it included considerable areas of undulating land.
2. The main details on the oid 1 -inch maps, dating from about 1880 , were found on the whole quite accurate: these details consisted of the rivers and streams, the main village blocks and the main roads and railways.
3. The chief work of revision consisted in substituting 50 feet contours for the form lines of the old maps; the general shapes of the hills and the crest lines of spurs were accurately indicated by the old form lines, but they were, especially in the case of minor features, very much exaggerated; sometimes small features shown by 2 or even more form lines in tho old maps proved to be too insignificant to be shown at all by our 50 feet contours. In the flat-topped hills, which form such a common and striking feature in parts of the area surveyed, the top form line of the old maps could generally be accepted as the accurate limit of the hill-top.
4. The chief deficiencies of the old maps, in addition to the absence of contours, were-
(a) They showed no cultivation limits.
(b) Embankments, cuttings, burial grounds and telegrapb lines were omitted.
(c) Numerous hamlets and isolated huts, mile-stones and temples, and in some sheete wells, were omitted.
(d) Many forest reserve boundaries were omitted.
(e) The classification of all roads had to be revised.
(f) In a few cases considerable discrepancies were found in the positiou of main metalled roads.
(g) Minor communications had altered very considerably, a very large proportion of the cart tracke and paths shown on the old maps had been abandoned and new ones had taken their places.
(h) Ornamentation was defective, some maps showed practically no trees and in the sheets where trees were shown no distinction was made between different classes of trees.
(i) Poona and Kirkee were very sketchily shown and have now been shown in much greater detail.
(j) The main line of the M. and S. M. Railway was very much out of position throughout 2 sheets.
(h) The Nira left bank canal in 2 sheets was very inaccurate.
(l) Important details which have developed since the time of the last survey and which had to be surveyed were :- the Nira Right bank canal in 2 sheets; the 2 construction railway lines to the sites of Mulshi dam and the Kundli valley in 3 sheets; the new Andbra lake in 1 sheet and the changes in the Bhantgar dam in 1 sheet.

Items (j) and (k) had evidently been added to the old maps from extra departmental sources, there was a foot-note on the old map saying "Railways and roads constructed since the date of survey have been added from extra departmental sources" but nothing was said about the canal. A foot-note of this sort is of no use to any one using the map as it is impossible to know the date at which roads and railways were constructed, and such a footnote can only be a warning to the effect that any of the roads and railways on the map be found incorrect.
5. The number of omissions on the old maps and the large number of corrections and additions which had to be made and the fixings required for the contouring made it necessary for the surveyors to go over the ground almost as carefully as if original survey was being done. The average number of fixings per square mile was $7 \cdot 2$, the average in the hilly portions being of course much smaller than in the plains.
6. When all the detail on a map is complete and accurate and the map is contoured a revision survey might be carried out by an almost cursory examination of the map in the field to see where changes in the detail had occurred, and when a change or addition had to be made it might be sufficient to fix the new details by measurement or by fixings based on the old detail; but this is not the case when new contouring has to be done and when lots of new items of detail have to be shown and when the only reliable cletail consists of the streams and the main village blocks (as well as main metalled roads and railways where they exist); in revision survey of this nature the surveyor is only saved the time and trouble of making such fixings as the original surveyor would have made solely to fix the streams and main detail and he still has to make all the fixings which an original surveyor would have had to make to do the contouring and to fix minor details. In very hilly areas the conditions are rather different, here there is little new detail of the kinds mentioned as deficient in the old maps, mountain tracks seldom change, cultivation only exists in the big vallevs, new hamlets and huts etc. are not found in large numbers; with the streams and main villages correctly shown the revising surveyor has in the hills little else to do but the contouring and inaking checks to satisfy himself that the old streams are correctly shown; but in the hills a surveyor's camp is much further from his work than is the case in the plains, and a much larger proportion of the surveyor's time is spent in getting to his work and climbing between his fixings, and as the ground has to be completely covered to do the contoming the actual saving in time of revision as compared to original survey is not very great.
7. In reporting on the result of our first season of revision survey I have been asked to discuss the advisability or otherwise of using low grade surveyors for such work. In considering this question it must be remembered that the Rs. 50 or 60 representing the difference of pay between a superior and an inferior surveyor represents such a small proportion of the total costs of a surveyor's squad that it must always be more economical to employ a good surveyor for any surver in which the extra skill of the good surveyor result in a considerable increase in the outturn of work, and generally we may say that the easier the nature of a surver may be the less advantage will there be in employing highly skilled surveyors. This is shown in the simplest form of cadastral surveying where very large scale maps in the plains are based on accurate chaining and detail measurements, and where an inferior surveyor can do the work as accurately and nearly as quickly as a good one, and where in fact there is no scope for the skill of the superior surveyor.
8. In applying this argument to the revision now under discussion a distinction must be made between the revision in the plains and in the hills.

In the plains the survey is easy but the ground has to be fairly rigorously covered with fixings in order to do the contouring and to fix the new items on the maps, the work
is laborious rather than highly skilled and the proportionate gain in using superior surveyors will not be very great. In revising in the hills it is different, here the skilled surveyor assures himself more quickly that the old streams are correct (or if incorrect more quickly corrects them) and his extra skill enables him to do good contouring by making fewer fixinge and using more intersected points than if he were doing an original survey, be should thus do a considerably larger outturn of revision than of original survey, while an inferior surveyor would probably require just as many fixings and take almost as long to do revision as to do original survey.
9. In the department we must always have and use a proportion of inferior surveyors and I think the general principle will always hold good that the easier a survey is the less advantage will there be in using only the best surveyors for it.
10. For the above reasons I think it will be found economical for revision in the very simple plains areas to use inferior surveyors, provided that work more suited to the skill of superior surveyors can be found for them elsewhere; the outturn of the party working under these conditions would be small but would be more than balanced departmentally by the better use made elsewhere of the superior surveyors. For revision in the hilly areas I feel sure that it would be ecoriomical to employ only superior surveyors, provided more simple work can be found elsewhere for the inferior surveyors, and except in so far as the training in contouring provided by sucb revision work is required as a means of training and improving the iuferior surveyors.

the topographical results of sir h. h. hayden's EXPEDITION TO TIBET IN 1922.

Compleed from the telbai, nartative of Sunveyon Gujuar Singh

 by Manoil H. T. Morshead.[Authority for spelling of place-names-Sir H. H. Hayden. The conventions employed in transliteration do not in some cases agree with those generally accepted by the Survey of India].

During the summer of 1922 , Sir H. H. Hayden, Kt., C.S.I., C.I.E., F.R.S., late of the Geological Survey of India, made a tour at the request of the Tibetan Government, of certain mineral bearing areas in central and south-eastern Tibet, in order to report on their resources.
In addition to Sir H. H. Hayden and his Italian guide M. Cesar Cosson, it was arranged, with the full concurrence of the Tibetan authorities, that the party should include an Indian Surveyor; lat Class Surveyor Gujar Singh being selected for the purpose by the Surveyor General.

The districts visited had for the most part seldom been previonsly traversed by Europeans, and our knowledge of the "Chang thang" portion of Tibet in the neighbourhood of the great lakes of Tang-ra, Kyä-ring, and Nam (Tengri Nor) has been derived from some half a dozen explorers of a generation ago, notably pandits Kishen Singh and Nain Singh of the Survey of India. It may therefore be of interest to place on record a short summary of the topographical exploration of this little-known area, as related by Surveyor Guijar Singh on his return.

From Darjeeling Sir H. H. Hayden's party proceeded to Gangtok in Sikkim, where they were met on April 3rd by an English-speaking Tibetan official
Narrative. who had been deputed by the Tibetan Goverument to attend them throughout their journey. This official, K. K. Mondrong, had been one of a few Tibetan youtls who had been sent ten years previously to Rugby to receive an English public school education, and had subsequently specialised in mining.

From Gangtok the party marched direct to Lhāsa, where they halted from 25th April till 9th May while instructions were being received regarding the areas to be visited.

Leaving Lhāsa on $9 t h$ May, the party first marched north-westwards to Shen-tsa Dzong, the headquarters of the district of Nak-tsang. The distance of 180 miles was traversed in 14 days, and planetabling on the $\frac{1}{4}$-inch scale was kept up throughout the march. The Nyen-chen-thang-la range of mountains was crossed viâ the Go-ring pass (19,$4 ; 0 \mathrm{ft}$.) on 16 th May, and for the next 40 miles peaks on this range triangulated by Major Ryder in 1904 continued to provide sufficient points for planetable interpolations. For the last 60 miles before reaching Shen-tsa the surveyor was compelled to make his own points by 'graphic triangulation" as he advanced. A check latitude was observed by Sir H. H. Hayden, at Lho-lam.

Advantage was taken of a 6 days' halt at Shen-tsa to measure a short base and to take a set of astronomical observations for latitude and azimuth. The latter observations were taken by Sir H. H. Hayden with a $4 \frac{1}{2}$-inch theodolite; a small piece of triangulation was also carried out to serve as a basis for further planetabling. A spell of broken weather interfered with the work at this period.

Ten days' marching in a westerly direction brought the party to their next objective, the village of Wom-po on the northern shore of the Tang-ra lake (the Dangra Yum lake of Nain Singh). After two days at Wom-po, the party returned to Shen-tsa, retracing their previous outward route as far as Ge-mãr, and thence diverging slightly northwards to the south-western shore of the Kyn-ring lake. 'As a check to the plane-tabler, Sir H. H. Hayden took star observations for latitude on four nights between Shen-tsa and Wom-po. Leaving Shentsa once again on 18 th June, a short trip was next made'along the north-eastern shore of the Kyáring lake to Chu-sum-di and Kyn-tsog respectively. Shen-tsa was again reached on 25 th June.

Finally quitting Shen-tsa two days later, the party proceeded in a north-easterly direction to the district of Nammu. The hills here flatten out considerably, and the level country on the castern shore of the Tsozi-ling was found to be very marshy and treacherous. From this point the party temporarily diverged, Sir H. H. Hayden proceeding to Lum-po on the southern bank of the 'I'sa-khye Tsangpo river, while Gujjar Singh worked eastwards, eventually rejoining Sir H. H. Hayden on 7th July at Zi.ri-mār. The weather at this time wa good and planetabling was carried on without difficulty; the surveyor, as usual, making his own points as the work progressed. Check-observations for latitude were made by Sir H. H. Hayden on 8th, 9th and 13 th of the month.

From Zi-ri-mãr the party turned southwards towards Lbāsa. At Thak, near the eastern margin of the Nam lake (Tengri Nor), the triangulated peaks of the Nyen-chen-thang-la range once more came into view, and an accurate planetable fixing was obtained for the first time since 19th May, diselosing an accumulated easterly error of some 4.3 miles in the course of nearly two months' work. The Nyen-chen-thang-la range was crossed viâ the Lar-gen pass ithe Dam Niargen La of A. K. 16, 700 ft . approximately) on 15 th July, and from this point the weather became so bad that the surveyor was unable to expose his planetable until Lhansa was reached five days later. A rough route traverse by watch and prismatic compass was maintained until reaching the margin of Major Ryder's survey of 1904 at the Chak pass, two marches north of Lhassa. This traverse was subsequently adjusted and transferred to the planetable section.

The party halted in Lhãsa from 20th July to 7th August, while Sir H. H. Hayden reported the results of his investigations. Gujjar Singh spent the time in making a large outline tracing of his surveys for the use of the Tibetan Government. This tracing was highly appreciated by the Tibetau Government, and was finally deposited in the new private house of the Dalai Lama which lies some two miles west of the Potala in the suburb of Norpu Lingka. The Tsārung Shāpe*, after inspecting the map and complimenting Gujjar Singh on his work, remarked that the Tibetan Government would be very glad to borrow the services of a surveyor from the Government of India, as the Tibetan Surveyor whom they had had trained at Roorkee College had been transferred to duty in the newly opened telegraph office in Lhāsa.

The party were next asked to visit the district of Thak Po. Quitting Lhāsa on 8th August, they crossed by skin boats to the south bank of the Kyi chu, which valley they ascended for three marches to the confluence of the Metu-ma-chu-thence turning sonthwards over the Te -khar pass ($17,050 \mathrm{ft}$.) to the Tsangpo valley. Crossing the latter river by boats at Sang-ri Dzong, the party ascended the Ri-go-sho valley from its confluence at Rong Dzong. The Pho-trang pass, at the head of the Ri-go-sho valley, forms the western boundary of the district of Thak Po whose head-quarters are situated at Lhap-so Dzong. This was reached on 21 st August. Subsequently the party again joined the Tsangpo valley four miles below Lhap-so, marching 27 miles down the right bank of the river to the junction of a small stream flowing from the south. Eight miles up this side stream is situated the village and dzong of Ku -ru-nam, the seat of a considerable hand-made paper industry which supplies most of the requirements of Lhassa and Southern Tibet. Pulp is manufactured from the scrub which grows plentifully in the lower valleys of sonth-eastern Tibet. Peach and apple trees are common in the lower Tsangpo valley, and the crops of barley, mustard and drarf pea were being harvested at the end of August.

Turning westwards on 28th August, five days' marching over bleak and almost uninlabited country brought the party viâ the Ya-tö-tra pass into the head of the wide and fertile Xa-lung valley which descends to Tse-thang on the Tsangpo, whence Lhaisa was reached in four days viâ Sam-ye Monastery and the Gong pass. During the visit to Thak P'o, the weather had been so bad as to preclude any attempt at planetabling from lixed points. The whole of this portion of the map consists thercfore of route-traverse exccuted by watch and compass, and checked by Sir H. H. Hayden's latitude observations in four places.

On arrival in Lhāsa, the final reports and maps were completed and presented to the Dalai Lama, who distributed rolls of woollen eloth and pieces of silk among the party in token of his appreciation of the services they lad rendered.

The party finally quitted Lhāsa on 20th September, travelling by boat down the Kyi chu to Chushul on the Tsangpo. Three days later the party broke up; the Tibetan official returned to his home in Lhñsa, while Gujjar Singh and his personal khalasi travelling ahead of Sir H. H. Hayden reached Gangtok on 7th October, and Darjeeling 7 days later.

Every possible assistance was rendered by the Tibetans to the party thronghont their journers in the country; free transport being provided, tents pitched wherever necessary; and supplies of flour, rice, sugar, and groceries sent out from Lhäsa.

Altogether 36,000 square miles of country were mapped on the t-inch scale, out of which an area of 2,000 square miles in the neighbourlood of Lhasa
Summary of resnlts. Previons exploratious in the arca. had been previonsly surveycd under Major Ryder during the Lhäsa Mission in 1904, while a tract of similar area sonth of the Tsangpo in the districts of Tsetang and Thak Po had been mapped on the $\frac{1}{6}$-inch scale by Captains Bailey and Morshead in 1913. The remainder of the country was only known from the routes of sundry explorers, whose work can be but briefly referred to here.

[^6]Early in 1872, explorer Kishen Singh ("Pandit A-k") travelling from Shigates first discovered the Narn tso or Tengri Nor lake, of which he made a circuit in 15 days. The explorer had intended to make his way north-eastwards to the city of Sining in China, but had the misfortune on leaving the lake to fall among armed robbers who looted all his possessions, leaving him no alternative but to return direct to Lhäsa and India.

Two years later, explorer Nain Singh, in the course of his great Tibetan journey, reached Wom-po from Ladākh and discovered the lakes of Dangra and Kyā-ring, both of which are indicated on his map with remarkable accuracy. From Shen-taa he continued around the northern shore of Tengri Nor, thence to Lhassa and eventually to Odalguri in Assam viî Tsetang and Tawang.

The first Europeans to visit the Nam lake were Mm. G. Bonvalot and Prince Henri of Orleans who in February 1890 succeeded in reaching the Dam Chu some 65 miles north of Lhāsa before being turned back by the Tibetan authorities. Three years later, two countrymen of theirs, Mm . Dutreuil de Rhins and Grenard, endeavouring to reach Lhäsa from the north-east were detained fifty days at Zamna on the eastern edge of the Nam lake before being finally permitted to quit the country via the Chinese frontier where Dutreuil de Rhins was murdered. Meantine, Namru bad been reached by W. W. Kockhill from the north-east in July 1891, while in September of the same year Captain H. Bower and Surveyor Atma Ram succeeded in penetrating as far as Kyã-ring lake.

The Go-ring La was reached by Mr. and Mrs. St. G. R. Littledale in 1893. Finally, Sven Hedin in 1901, travelling from the north, crossed the Tsa-khye Tsangpo and reached a point one day's journey north of Tengri Nor before being, like his predecessors, turned back.

APPENDIX

List of Survey of India Publications

(Corrected up to 30 th September 1924)

PUBLICATIONS

OF THE

SURVEY OF INDIA

SYNOPSIS

A-HISTORY AND GENERAL REPORTS

Evfrest's Gieat Anc Books
G.T.S. Volumes	\ldots	...	\ldots	\ldots	...
Thingulation Pamphlets	\ldots	\ldots	\ldots	\ldots	
Leveling Pamphlets ...	\ldots	..	\ldots
Tide Tables				\ldots	\ldots

C-CATALOGUES AND INSTRUCTIONS.

Departmental Orders...	\ldots	...	\ldots	124
Catalogues and Lists...	\ldots	\ldots	\ldots	124
Tables and Star Charts	\ldots	\ldots	...	125
Old Manuals	\ldots	\cdots	...	\cdots	\ldots	125
Sunvey of India Hand-Books	\ldots	\ldots	\ldots	\ldots	..	125
Notes and Instnuctions	...	\ldots		126

D-MISCELLANEOUS PAPERS.

A-HISTORY AND GENERAL REPORTS.

(Ohtainable from the Superintentent, Map Pulication, 13, Wood Street, Calcutta).

MEMOIRS

1. A Memoir on the Indian Surveys. By C. R. Markham, India Office, London, 1871.

Price Rs, jor 10°.
2. Ditto (second erlition). By C.R. Makham, C.h., F.R.S.,

India Office, London, 187s. Price Rs. $\overline{0}-9$ or 11 .
3. Abstractof the Reports of the Surveys and of other Gcographical Operations in India, 1869-78. By C.R.
Markham and C. E. D. B/ack, India Office, Luondon.
Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890. B! C.E.D. Blach, Indin Oflice, Jondon, 1891 . Frice Ris. $5-9$ or 11^{s}.

ANNUAL REPORTS

Reports of the Revenue Branch. 1851-1877.-(1951.67 and 1869.70, out of print). Price Rs. 3 or 6.

Ditto	Topographical Branch
Ditto	Trigonometrical Branch.

1800-1877.-(Out of print).
Ditto Trigonometrical Branch. 1961.1878.-(1861-71, out of print).
Price Rs. 2 or $4{ }^{4}$.
In 1878 the three branches were amalgamated, and from that date onwards nnnual reports in single volumes for the whole department, are available as follors: -
General Reports $\left\{\begin{array}{c}\text { from } 1877.1000(1877.79 .1587 .88,1895-96 \text { and } 1897.98 \text {, out of print) } \\ \text { at } R \mathrm{R} .3 \text { or } 6^{3} \text { per volume }\end{array}\right.$
(from 1000-1922 (1902-0t and 1906-08, out of print) at Rs. 2or 4^{\prime} per volume.
From 1900 onwards the lieport has been issued annually in the form of a condensed statement known as the "General Report" supplemented by fuller reports, which were called "Extracts from Narrative Reports" up to 1909, and since then have been styled "Records of the Survey of India." 'These fuller reports are available ns follows:-
(a) "Extracts" Volumes at Rs. 1.8 or $\overline{3}$ s per volume.

1900-01-lecent Improvements in Photo-Zincograply. G. 'T. Triangulation in Upper Burma. Latitnde Operations. Experimental Base Measurement with Jäderin Apparatus. Magnetic Surrey. Tidal and Levelling. Topography in Upper Burma. Caleutta, 1903. (Out of print).

1901-02-G. T. Triangulation in Opper Burma. Latitude Operations. Magnetic Survey. Iidnl and Levelling. Topograplyy in Upper Burma. 'I'opography in Sind. Topography in the Punjab. Calcuttn, 1904. (Out of print.)

1902-03-Principal Jriangulation ia Upper Burma. Topography in Upper Burma. I'opography in Shan States. Suryeg of Sämblar Lake. Latitude Operations. Tidal nad Levelling. Magnetic Survey. Introduction of the Contract System of Piyment in Iraverse Survias. Traversing with the Subtense lBar. Compilation and Reproduction of Thaina Maps. Calcutta, 1905.

1903-04-Magnetic Surrey. Pendulum. Tidal and Lerelling. Astronomical Azinuthe. Utilization of old Traverse Data for Modern Survers in the United Provinces, Identification of Snow lenks in Nepãl. Topographical Survers in Sind. Notes on town and Municipal Surveys. Notes on Riverain Survoys in the Punjab. Calcutta, 1906.

1904-05-Magnetic Survey. Pendulum Operations. Tidal and Levelling. 'Triangula. tion in Balnchistān, Survey Operntions with the Somāliland Field Force. Calcutta, 1907.

1905-06-Magnetic Survey. Pendulum Operations. Tidal and Levellivg. Topograploy in Shan States. Calcutta, 1908.

1906-07-Maguetic Surveg. Pendulum Operations. 'Iidal and Levelling. Triangulation in Baluchistàn. Astronomical Latitudes. Jopography in Shan States. Calcutta, 1909.

1907-08-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operations, Topography in Shun States. Culcutta, 1910.

1908-09-Magnetic Surrey. Tidal and Levelling. Peudulum Operations. Triangulation. Calcutta, 1011.
(b) "Records of the Survey of India" at Rs. 4 or $S^{\prime \prime}$ per volume, except where otherwise stated.
Vol. I-1909-10-Topographical Survey. Triangulation. Tidnl and Levelling Operntions. Geddetic Survey (Astronomical latitudes and pendulum observations). Magnetic Survey. Calculta, 1912.

V-1912-13-Topographical Survey. Trinugulatiou. Tidal nud Levelling Operations. Geodetic Survey. Mngnetic Survey. Note on the relationship of the Himalayas to the Indo-Gaugetic Plain.
... Calcutta, 1914.
VI-1912-13-Link connecting the Triangulations of India and Russia Delira Dū̄, 1914. VII-1913-14-Topographicnl Survey. Triangulation. Tidal aud Levelling Operations, Geo. detic Survey. Mnguetic Survey (Annual report and Govermment Committee's report). Note on Scales and cost rates of Town plans. Calcutta, 1915.

IX-1914-15-Topographical Surres. Triangulation. Tidal and Levelling Operations. Magnetic Survey. Criterion of strength of Indian Geodetic TrimaguIntion. A traverse signal for City Surveys. The plains of Northern India aud their relationship to the Himalaya Mountains by Colonel S. G. Burrard F. R. S. Report on T'urco-Persinn Frontier Commission.

Calcutte, 1916.
X-1915-16-Topographical Surrey. Tidal and Levelling Operations. Magnetic Survey. Mechanical Integrator for calculating Attractions (illustrated). Tra. verse Survey of the boundary of Imperial Delhi ... Dehra Dūn, 1917.
XI-1916-17-Topographical Survey. Triangulation-use of high trestle for stations and 100 -feet mast signals. Tidal and Levelling Operations. Magnetic Survey. Note on Basevi's Pendulum operations at Morê. PhotoLitho Ofice-New method of preparing Layer plates-Developments and Improvements in preparing Tint-plates. Delira Dūn, 1918.
XII-Notes on Surrey of India Maps and the modern developuent of
Iudian Cartography, by Lt.-Col. W.Mr. Coldstream, R.E., $\}$ Calcutta, 1919.
Superintendent, Map Puiblication.
XIII-1917-18-Topographical Surves. Tidal and Levelling Operations. Magnetic Survey. Photo-Litho office-the Powder Process. Problem of the Himălayaund Gangetic Trough-Reriew by Di: A. Morley Davies. Dehra Dūn, 1919.
XIV-1918-19-Topographical Survey. Tidnl and Levelling Operations. Levelling in Mesopotnmin. Mnguetic Survey. Dehra Dūn, 1920.
XV-1919-20-Topographical Surveg. Tidal work. Levelling-proposed new level net. Magnetic Survey. The Earth's Axes and Figure by Dr. J. de Granff Hunter (a paper read at the R. A. S. Geophysical Meeting). Report on the espedition to Kawet. Note on the Topograply of the Nun Kun Mnssif in Ladākh Dehra Dūn, 1921. XVI-1920-21-Topographicnl Survey, Tidal work. Levelling and Magnetic Survey. High Climbs in the Himàlaya prior to the Everest Expedition. Mt. Everest Survey Detachment lieport, 1921. 'Iraverse Survey of Allanā̈băd city. Seltlement of Boundary between Mysore and South Kannra.

Dehra Dūı, 1922.
XVII- 1923 - Memoir on Maps of Chinese Turkistān and Kansu from the Surveys made during Sir A. Stein's Explorations, 1900-01, 1906.08, 1913-15.

Dehra Dūn 1923
XVIII-1821-22-Topographical Survey. Tidal work. Leveling and Magnetic Survey. Traverse Survey of Allahābād city. Settlement of Boundary between Mysore end South Kanara. Notes on Revision Survey in the neighbourhood of Poonn
. Dehra Dūn, 1923.
"Notes of the Survey of India" ne issued monthly. Price As. 2 or 3 .

B-GEODETIC WORKS OF REFERENCE.

(Obtainable from the Superintendent of the Trigonometrical Survey, Dehra Dün, U.P.)

 EVEREST'S GREAT ARC BOOK.1. An account of the Measurement of an Arc of the Meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, by Capt. George Everest. East India Company, Londou, 1830. (Out of print).
2. An account of the Meaburement of two Sections of the Meridional Arc of India,
bounded by the parallele of $18^{\circ} 3^{\prime} 15^{\prime}, 24^{\circ} 7^{\prime} 11^{\circ}$ and $29^{\circ} 30^{\prime} 48^{\prime}$, by Lt. Col. G. Everest,
F. B. S. Eant India Company, London, 1847. (Out of print).
3. Engraringe to illuatrate the above. London, 1847. (Out of print).

G.T.S. VOLUMES-describing the Operations of the Great Trigonometrical Survey,

 Price Rs. 10-8 or 21' per volume, except where otherwise stated.Vol. I-Standards of Measure and Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830.

Delıra Dūo, 1870. (Out of print).
Appendix No. 1. Description of the method of comparing, and the apparatus employed.
Appendix No. 2. Comparisons of the Lengthe of 10 .feet Standarde A and B, and determine. tions of the Difference of their Expansions.
Appendir No. 8. Comparisous between the lo-feet Slandards $I_{B} I_{s}$ and A.
Appendix No. 4. Comparieons of the 6 -inch Drass Scales of the Compensated Microscopes.
Δ ppeodix No. 5. Determination of the Lerigth of the Inch [7.8] on Carg's 3.foot Brass Beale.
appendir No. 6. Comparieons between the 10 . feet Standard Bars I_{s} and \mathbf{A} for determining the Expansion of bar A.
Appendix No. 7. Final determination of the Differences in Lengtl between the $\mathbf{1 0 - f e e t}$ Standiurds $I_{B} I_{S}$ and A.
Appendix No. 8. On the Thermometere emplojed with the Slandarde of Lengh.
Appendir No. 9. Determination of the Lengtha of the Sub-divisions of the Incli [a.b].
Appendix No. 10. Report on the Praclicni Errors of the Measurement of Che Cape Comorin Buse.
II-A History and General Description of the Reduction of the Principal Triangulation. ... Dehra Dūn, 1879. (Out of print).
Appendir No. 1. Investigations applying to the Indinn Geodesy.
Appendix No. 2. The Micrometer Microscope Theodolites.
Appendix No. 3. On Observations of Terrestrial Refraction at certain stations aitaated on the plains of the Ponjab.
Appendix No. 4. On the l'eriodic Eitors of Gradnated Circles, \&c.
Appendix No. 5. Ou certain Modifications of Colonel Evcrest's Eystem of Observing intro. dnced to meet the specialities of particular instroments.
Appendix No. 6. On Tidal Observations at Karāchi in 1855.
Appendix No. 7. An alternatire Metbod of oltaining the Formala in Chapters VIII and XV employed in the Reduction of Triangulation,-Additional Formula and Demonstrations.
Appeudic No. 8. On the Dispersion of Circnit Errors of Irriangolation after the Angles hare been corrected for Figaral conditione.
Appendir No. 9. Corrections to azimuthal Observations for imperfect Instramental ddjustments.
Appendix No. 10. Reduction of the N.W. Quadrilateral-the Non-Circnit Triangles and their Final Figaral A djastments,
Appendix No. 11. The 'lheorctical Errors of the 'Iringalation of the North. West Quadrilateral.
Appendix No. 12. fimultaneous Heduction of the N.TV. Qaadrilateral-the Compnatione.
III-North-West Quadrilateral.-The Principal Triangulation, the Base-Lide Figures, the Karāchi Longitudinal, N. W. Himālaya, and the Great Indus Series. Dehra Dūn, 1873. (Out of print.)
IV-North-West Quadrilateral-The Irincipal'Triangulation, the Great ArcSection $24^{3}-30^{\circ}$, Rahūn, Gurhāgarlı and Jugi-Tīla Meridional Series and the Sutlej Series.
...
...
Dehra Dūn, 1876.
IVA-North-West Quadrilateral-The Principal Triangulation, the Jodhpur and the Eastern Sind Meridional Series with the detnils of their Reduction and tho Final Resulte.

Dehra Dūn, 1886.
V-Pendulum Operations of Coptains J. P. Basevi and W. J. Heaviside, and their Reduction. Dehra Dūn and Calcutta, 1879.
Appendir No. 1. Account of the Remensurement of the I.ength of Kater's Pendulum at the Ordnance Surrey Offico, Southamplon.
Appendix No, 2. On the Relation between the Indian Pendulum Operationa, and those which hare been conducted elsewhere.
Appendix No. 8. On the Theory, Use and Bistory of the Consertible Pendulum.
Appendir No. 4. On the Lenglh of the Eecende Pendulum deterninable from Materiale now exiating.
Appendir No. 5. A Biblingraphical Liat of Works relating to Pendulum Operations in connection with the Problem of the Figure of the Earth.
VI-South-East Quadrilateral-The Principal Trinngulntion and Simultnneous Reduction of the following Series:-Grent Arc-Section 18° to $2 \mathbf{4}^{\circ}$, the East Const, the Calcutta and the Bidar Longitudinnl, the Jubbulpore and the Bilāepur Meridionals.

Dehra Dūn, 1880. (Out of print.)
VII-North-East Quadrilateral-Genernl Description and Simultnneous Reduction. Also details of the following five series:-North-Enst Longitudinal, the Budhon Meridionnl, the Rangir Meridional, the Amua Meridional, and the Kaiàra Meridional.

Dehra Dūn, 1882.
Appendir No. 1. The Details of the Separate Reduction of the Budbon Meridional Series or Series J of the Norlh-East Quadrilaternl.

G.T.S. VOLUMES-(Continued).

Appendix No. 2. Reduction of the Nortb-East Qaadrilateral, The Non-circuit Iriangles
Appendix No. B. On the Theoretical lirrors geverated reapectively in Side, Azimath Latitude and Longitude in a Chain of Triangles.
Appendix No. 4. On the Jispersion of the Residaal Errorg of a Simaltancous Redaction of several Chains of I'riangles.
Vol. VIII-North-East Quadrilateral-Delaila of the following eleven series:Gurwāni Meridionnl, Gora Meridional, Hurī̄̄ong Meridional, Chendwâr Meridional, North Parasnāth Meridional, North Malūnchn Meridional, Cnleutta Meridional, East Culcutta Longitudinal, Brahmaputra Meridional, Eastern Fron-tier-Section $23^{\circ}-26^{\circ}$, and Assam Longitudiual. ... Dehra Uūn, 1882 1880-81.
IX-Telegraphic Longitudes-during the yenrs 1875.77 and $\begin{array}{r}\text { 1880-81. } \\ \text { Delirn Dūn, } 1883 .\end{array}$

1. Determination of the Geodetic Elements of Longitude Stations.
$\begin{cases}\text { 1. } & \text { Determination of the Georelic Elements of Loogla } \\ \text { 2. } & \text { Descriptions of Points used for Longitade Stationg. }\end{cases}$
Δ ppendices to Part I. $\{$ 3. Comparison of Qeodetic with Electro-Telegraphic Arcs of Longitado.
2. Circait Errors of Observed Ares of Longitade.
3. Results of Iliometer Obserrations made during Season 1890-81.
(1. Sitantions of the Longitude Stations at Bombay, Aden and Saez

Appendices to Part II. $\begin{cases}\text { 2. Survey Operations at Aden. }\end{cases}$
3. Results of the Jriangolation.
4. Right Ascensions of Clock Stars.

X-Telegraphic Longitudes-during the years 1881.82, 1882.83, and 1883.84. Dehra Dūn, 1887.

Appendices to Part I. $\langle 3$. On the Errors in ΔL cansed by Λ rmatore-time and the Retardation of the Llectric Carrent.
4. On the licjection of some doubtful Arcs of season 1881-82.
(5. On the probable Canses of the lircors of Are-mensnrements, and on the Nature of the Defects in the l'ransit Instroments which might prodace them.
XI-Astronomical Latitudes-durng the period 1805-1885. Dehra Dūn, 1890.
XII-Southern Trigon-General lescription und Simultaneous Reduction, Also details of the followivg two series:-Great Arc-Section $8^{\circ}-18^{\circ}$, and Bombay Longitudinal. Dehra Dün, 1890.
SIII-Southern Trigon-Details of the following five series:-South Konkan Coast, Mangalore Meridional, Madras Meridional and Const, South.Enst Coast, and Madras Longitudinal. Dehra Dün, 1890.
XIV-South-West Quadrilatera1-Details of Principal Triangulation and Simultaneous Reduction of its component series. ... Delira Düu, 1890 ,
XV-Telegraphic Longitudes-from 1885 to 1892 and the Revised Resulta of Volumes IX and X: also the Simultaneous Reduction and Final Results of the whole Operations.
… ...
Dehra Dū̀, 1893.
Appendix No. 1. Determination of tho Geodelic Elements of the Longitudo Stations.
Appendix No. 2. On Retardation. (A numerical mistake was made in this appendir in the conversion of n formula from kilometres to miles: tho conclusions drawn cannot therefore be upheld).
XVI-Tidal observations-from 1873 to 1892, and the Methods of Reduction. Dehra Dün, 1901.
XVII-Telegraphic Longitudes-during the jenrs 1894-95-96. The Indo-Europend Ares from Karāchi to Greenwich. Dehra Dūn, 1901. Appendir No. 1. Deseriptions of Points used for Longitude Stations, Appendix No. 2. The Longitude of Madras.
XVIII-Astronomical Latitudes from 1885 to 1905 and the Deduced Valuea of Plumb-line Deflectione. Dehra Dūu, 1906.

Appendix No. 1. On Deflections of the Plumb-line in India.
Appendir No. 2. Determination of the Geodelic Elements of the Latitude Statione of Bajamara, Bahak, Lambalach and Kidarkunla.
Appendix No. 3. On lto (N-S) Difference exlubited by Zenith Eeclor No. 1.
Appendix No. 4. On the Valne of the Micrometer of the Zenith Telescope.
Appendix No. 5. On tho Azimuth Observations of the Great Trigonometrical Survey of India. Appendir No. 6. A Cntulogue of the Publicalions of the Great Trigonomedricnl Suryey of India. Appendix No. 7. On the combination weights employed.
XIX-Levelling of Precision in India from 1858 to 1909. Delirn Dūn, 1910. Appendix No. 1. Experiment to teat the changer, due to Moiatare and Tomperatare, in the Length of a Levelling Staif.

G.T.S. VOLUMES-(Coniinued).

Δ ppendix No. 2. On the erection of Standard Beach-Marks in India doring the yeara 1904-1910.
Appendix No. 3. Memornudam on the steps taken in $1905 \cdot 1910$ to ensble movements of the Liarth's crast to be detected.
Appendix No. 4. Dyunmic and Orthometric corrections to the Himalayan levelling lines and circait; and a consideration of the order of magnitude of possible refraction errors.
Appendix No. 6. The passage of rivers by the Levelling Operations.
Appendix No. 6. 'I'he Iirrors of the Trigonometrical values of Heights of stations of the principal triangulation.
Appendix No. 7. The effect on the spheroidal correction of employing Theoretical instead of Observed values of Gravity and a discossion of different formala giving variation of Gravity with Latitade and Height.
Appendix No. 8. On the discrepancy between the Trigonometrical nand spirit-level values of the dillerence of Leight between Dehra Dūn and Mnssoorie.
Vol. XIXA-Bench-Marks on the Southern Lines of Levelling. Delira Dūn, 1910.
Price Rs. 5 or 10°.
XIXB-Bench-Marks on the Northern Lines of Levelling. Dehra Dūn, 1910.
Price Rs. 5 or 10^{0}.
TRIANGULATION PAMPHLETS with charts, are now being issued for every square degree, giving the results of all minor triangulation. Price Re. 1 or 2^{\prime} per pamphlet Exvept otherwise stated. Vide page 131.
LEVELLING PAMPHLETS-giving heights and descriptions of all Bench-marks, fixed by levelling of Precision in India and Burma. Each pamplilet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ map of India. Each is illustrated by a map of the area. Price Rs. 2 or 4^{s} per pamphlet except where othervise stated.
Pamphlet Nos. Latitude. Lougitude. Published Pamphlet Nos. Latitade. Longitude Published.

38	$32^{\circ}-36^{\circ}$	$65^{\circ}-72^{\circ}$	$"$	1912.	$"$	62	$28^{\circ}-32^{\circ}$	$80^{\circ}-8 t^{\circ}$	"
30	$28^{\circ}-32^{\circ}$	$65^{\circ}-72^{\circ}$	$"$	1913.	$"$	63	$24^{\circ}-28^{\circ}$	$80^{\circ}-8 t^{\circ}$	192.

 $"$ Addendum $\quad " \quad 1915 . \quad " \quad \because \quad$ Addendum $\quad 1919$. $4428^{\circ}-32^{\circ} \quad 72^{\circ}-76^{\prime} \quad$ " $\quad 1920 \dagger \quad$ " $73 \quad 20^{\circ}-24^{\circ} \quad 84^{\circ}-88^{\circ} \quad$ " 19213.
 $\begin{array}{lllllllllll}45 & 24^{\circ}-25^{\circ} & 72^{\circ}-76^{\circ} & " & 1911 . & " & 74 & 16^{\circ}-20^{\circ} & 84^{\circ}-88^{\circ} & \text { " } \\ 46 & 20^{\prime \prime}-24^{\circ} & 72^{\circ}-76^{\circ} & " & 1912 . & " & 78 & 24^{\circ}-28^{\circ} & 86^{\circ}-92^{\circ} & " 1913 . & 1923 . * *\end{array}$

 $\begin{array}{lllllllllll}53 & 28^{\circ}-32^{\circ} & 76^{\circ}-80^{\circ} & " & 1920 . & " & 92 & 24^{\circ}-28^{\circ} & 96^{\circ}-100^{\circ} & " & 1918 . \| \\ 54 & 24^{\circ}-28^{\circ} & 76^{\circ}-80^{\circ} & " & 1921 . T & " & 93 & 20^{\circ}-24^{\circ} & 90^{\circ}-100^{\circ} & " 19 & 1917 . \|\end{array}$ $\begin{array}{lllllll}55 & 20^{\prime}-24^{\prime \prime} & 76^{\circ}-80^{\circ} & " & 1912 . & " \quad 94 & 16^{\circ}-20^{\circ} 96^{\circ}-100^{\circ} \\ 56 & 16^{\circ}-20^{\circ} & 70^{\circ}-80^{\circ} & " & 1912 . & " & \\ & & 1916 . \|\end{array}$

* Ardendum
" $\quad 1919 . \quad "\left\{\begin{array}{lll}95 & 12^{\circ}-16^{\circ} & 96^{\circ}-100^{\circ}\end{array}\right\}$
-

Levelling of Precision in Mesopotanin-
Descriptions and lieights of bench-marks, reprinted, Dehra Dūn, 1923. Price Rs. 3 or 6^{3}. TIDE TABLES--

Since 1881 Tidal predictions based on the observations of the Survey of India have been published annually by the India Office, London up till the year 1922. From 1913 onwards the prediction and publication have been undertaken at Dehra Dūn by the Survey of India. The tables give the time and height of high and low water for every day in the year at each port, and are published early in the previous year. Current tables are available for the following 40 ports :-

Western Ports-

Suez (Egypt)—Perim—Aden-Maskat—Bnsrah—Bushire—Karāchi-Okha Point and Bet Harbour (Gulf of Cutch)-Porbnndar-Port Albert Vietor (Käthiàwār)-Blävnagar-Bombay (Apollo Bandar)-Bombny (Prince's Dock)-Marmagno (Gon)-Kārwār-Beypore (near Calicut)-Cochin-Tuticoriu-Minicoy (Indian Ocenn)-Pāmban Pass (Island of Rämeswaram).

* Price he. 1 or $2^{\prime} \dagger$ 2nd Edition. \ddagger 2nd Edition (revised and enlarged). § Heights on pages $45 \& 46$ repised in 1918. || Heights revised. If ard Edition (reviecd with additions). ** Data np to 1823.

TIDE TABLES-(Continued).

pastern Ports-

Colombo (Ceylon)-Galle (Ceylon)-T'rincomalee (Ceylon)-Negnpatam-Madras_ Cocanāda-Vizagnantam-False-Point-Dublat (Sāgnr Island)-Diamond Harbour-Kidderpore (Calcutta)-Chittagong-Aliyab-Dimmond Island (Burma)-Bassein-Elephaut Point (Burma) -Rangoon-Amherst-Monlmein-Mergui-Port Blair.

The Tide Tables are issued in the following forms up to those for 1924.
(i) Part I and Part II-including Western and Ensteri ports respectivelyEach part Rs. 8 or 16^{s}.
(ii) Pamphlets-gising separately the tables for individual ports or for small local groups of ports-Price varying from $d s .12$ or $1^{\prime} 6^{\prime \prime}$ to Rs. $1-8$ or 3 s per pamphlet.
(iii) Sheets-These are only published for Knrāchi, Bombay, Madras, Hooghly River. Price varying from $A s .12$ or $1^{\prime} 6^{\prime \prime}$ to Rs. 1.8 or 3^{3} per sheet.

C-CATALOGUES AND INSTRUCTIONS.

(Obtainable from the Superintendent, Map Publication, 13, Food Street, Calcutta).

DEPARTMENTAL ORDERS.-

From 1878 to 1855 the Surveyor General's orders were all issued as "Circular Orders." Siuce then they have been classified as follows:-

From 1885 to 1904 as $\left\{\begin{array}{l}\text { 1-Government of India Orders (cnlled "Circular Orders" } \\ \text { up to } 1898 \text {.) } \\ \text { 2-Departmental Orders (Administrative). } \\ \text { 3-Departmental Orders (Professional). }\end{array}\right.$
In 1904 the various orders issued since 1878 were reclassified as follows:-
1.-Government of India Orders.- 786
2.-Circular Orders (Administrative).- 402
3.-Circular Orders (Professional).- 196
4.-Departmental Orders. (appointmeuts, promotions, transfers, etc.)

These are numbered serially and had reached the above numbers by September 1922. Gorernment of India Orders and Circular Orders (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders have been issued siuce 1910 in the form of "Circular Memos." These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows:-

1. Gorervment of India Orders (Departmental) 1878-1903.-Calcutta, 1904.

2. Regulations on the subject of Language Examinations for Officers of the Survey of India. Calcutta, 1914.
3. Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders.)Calcutta, 1914.
4. Specimens of papers set at Examinations for the Provincial Service.-Dehra Dund, 1903.-(Out of print).

CATALOGUES AND LISTS.

1. Catalogue of Maps published by the Survey of India. Corrected to 1st Jnnuary 1923, Calcutta, 1923. Price Re. 1 or 2^{2}.

NOTE.-Lists of new mapa pablished during ench month appear in the monthly NOTES OF THE SURVEY OF INDIA. These monthly lists are also issued separately.
2. Catalogue of Maps of the Bombny Prenideucy, Calcutta, 19i3. Price As. 4 or 6^{4}.
3. List of the publications of the Survey of India (published annunlly)-Dehrn Dīn. Gratis.
4. Price List of Mathematical Instrument Oflles. Calcuttn, 1921. Gratis.
5. Catalogne of Booke in the Head-Quartera Library, Calcutta, 1901. (Out of print).

- For Depertmental uee only.

CATALOGUES AND LISTS-(Continued).

6. Catalogue of Scientific Books and Subjects in the Library of the Trigonometrical Survey Office. Dehra Dün, 1008. Price Re. 1 or 2^{s}.
7. Classified Catalogue of the Irigonometrical Survey Library. Dehra Dūn, 1921. Gratis.
8. Green Lists-PART I-List of officers in the Survey (annually to date Ist January) Calcutta. Price As. 6 or 9^{d}.
PART [I-History of Services of Officers of the Survey of India (aniually to date 1st July)-Calcutta. Price As. 8 or 1^{s}.
9. Blue Lists-Ministerial and Suborlinate Establishments of the Survey of India.

PART I-Head-quarters and Delira Dūn oflices (published anuually to date 1st. A pril)-Calcutta. Price Re. 1 or 2^{s}.
PART II—Circles and parties (published annually to date 1st Jauuary).-Calcuttn. Price Rs. 1.8 or 3^{3}.

TABLES AND STAR CHARTS

1. Auxiliary Tables-to facilitate the calculations of the Survey of India. Fourth Edition (Revised), Dehıra Dūn, 1906. Price Rs. 4 or S^{\prime} in cloth and calf, or Rs. 2 or I^{s} in puper and boards.
2. *Auxiliary Tables-of the Survey of India. Fifth Edition (Revised and Extended), by J. de Graalf Hunter, M.A., Sc.D., F. Inst. P. In parts-
PART I-Graticules of Maps (Reprinted). Delıra Dūn, 1921. Price Re. 1 or 2^{3}. PART II—Mathematical Tables (Reprinted with additions). Delıra Dūn, 1924 Price Rs. 2 or 4'.

PART III-Topographical Survey Tables. (Reprinted mith additions). Dehria Dūn, 1923. Price Re. $1-8$ or 3^{3}.
3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dūu, 1918. Price As. 4 or 6^{d}.
4. † Metric Weights and Measures and other tables. Photo-Litho Oaice. Calcutta, 1889. (Out of print.)
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dūn, 1886. (Out of print).
6. Logarithmic Sines, Cosines, 'langents and Cotnugents to $\overline{5}$ places of decimals. Delıri Dūu. 1915. (Out of print).
7. Common Logarithms to 5 places of decimnls 18s5. Price As. 4 or 6^{4}.
8. Table for determining Heights in Traversing. Dehra Dūn, 1898. Price As. 8 or $1^{\text {² }}$.
9. Tubles of distances in Chains aud Liuks corresponding to a subteuse of 20 feet. Delira Dūn, 1889. Price As. 4 or 6^{2}.

$10 . \dagger$	Ditto	ditto	10 feet. Calcutta, 1915.	
$11 . \dagger$	Ditto	ditto	8 feet.	Ditto.

12. Star Charts for Intitude 20° N., by Colonel J. R. Hobday, I.S.C. Calcutta, 1904. Price Rs. 1.9 or 3^{s}.
13. Star Charts for latitude 30° N., by Lt.-Col.S. G. Burrard, R.E., F.R.S. Dehra Dūu, 1006. Price Rs, $1-8$ or 3^{s}.
14. + Catalogue of 219 Stars for epoch Jan. 1, 1892, from observations by the Survey, Dehra Dūn, 1893. Price Rs. 2 or 4^{4}.
15. + Rainfall, maximum and minimun temperatures from 1868 to 1920 , recorded at the Survey Office Observatory, Dehra Dūa. (Revised.)

OLD MANUALS.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal and the North-Wostern Provinces. Compiled by Captains R. Smyth and H. L. Thuillier. Calcutta 1851. (Out of print.)

9 Ditto ditto
(Out of print).
3. A Manual of Surveging for India, detniling the mode of operations on the Trigonometrical, Topographical and Rovenue Surveys of India. Compiled by Colonel H. L. Thuillier, C.S.I., F.R.S., aud Licutenant-Culonel R. Smyth. Third Edition, rerised and ealarged, Calcuttn, 1875. (Out of print.)
4. Haud-book Reveuue Brauch. Calcutta, 1893. Price Rs. 2-8 or 5^{5}.

SURVEY OF INDIA HAND-BOORS.

1. Hand-book of General Instructions, Fourth Edition. Calcutta, 1914. Price $\boldsymbol{R}_{\mathrm{N}} 3$ or 6^{s}.
2. Hand-book, Trigonometrical Branch, Second Edition. Cnlcutta 1902. (Out of print.)

* Obtainable from the Superinteudent of the Trigonometrical Survey, Dehra Dnu, U.P.
+ For Departmontal use only.

3. Hand-book of Trigonometrical Instructions.-Third Edition. Chapters, in pamphlet forms-

Chapter VI-Levelling of Precision. Dehrn Dūn 1920, Price Re. 1 or 2 s.
4. Hand-book, Topographical Branch, Third Edition. Calcutta, 1905. (Out of print.)
5. Hand-book of Topography.-Fourth Ldition. Cnlcutta, 1911. Chapters, in pamphlet forms-

Chapter	I-Introductory.-reprinted with additions, 1921. Price As. 8 or 1^{1}. 1I-Constitution nud Organization of n Survey Party.-reprinted with additions, 1923. Price As. 8 or 1^{s}.
"	III-Triangulation nud its Computation.-revised 1923. Price Re.1or2s.
"	IV-'heodolite Traversing-reprinted, 1924. Price Re. 1 or $\mathbf{2 l}^{3}$.
"	V-Plano-tabling.-reprinted 1915. Price Re. 1 or $2^{\text {P }}$.
"	VI-liair Mapping.-reprinted with additions and revised, 1922. Price Re. 1 or 2^{2}.
"	VII-Trans-frontier Reconnaissance.-reprinted 1914, Price As. 8 or 1s. VIII—Surveys in time of wai (not ready).
,	IX-Forest Surroys and Maps.-revised 1924. (In the Press).
"	--Map Reproductiou.-reprinted 1019. Price As. 8 or 1 s.
"	XI-Geographical maps.-1917. Price As. 8 or 15 .

6. *Photo-Litho Office, Notes on Organization, Methods and Processes. By Mfajor W. C. Hedley, R. E. Revised and amplified by Capt. S. W. S. Hamilion, R. E. Calcutta, 1914.
7. The Reproduction (for the guidance of other Departments), of Maps, Plans, Photographs, Diagrams, and Line Illustrations. Calcutta, 1914. Price Rs, 3 or 6.

NOTES AND INSTRUCTIONS.

Drawing and Paper.

1. *Notes on Printing Papers suitnble for Maps, and on Whatman Drawing Paper. By Major W. M. Coldstream, R. E. Calcutta, 1911.
Printing and Field Litho processes.
2. *Report on Rubber Offet Printing for Maps. By Major W. M. Coldstrean, R. E. Calcutta, 1911.
3. "Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for a siuall section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
4. *Report on the Working of the Light Field Litho Press (experimental) in November nad December 1910 with Appendices. By Lieutcnant A. A. Chase, R. E., Calcutta, 1911.
(1) Notes on some of the Methods of Reproduction suitable for the Ficld.
(2) Suggested Equipment I'ables for the Light Field Litho Press (experimental).
5. *Report on a trial of the equipment of the 1st (Prince of Wales' Own) Sappers and Miners for reproducing maps in the field. By Lieutenant A. A. Chase, R. E. Cnlculta, 1912. (Uut of print).

Base Lines and Magnetic.
6. Notes on use of the Jäderin Base-line Apparatus. Dehra Dūn. 1904. (Out of print).
7. Miscellaneous Papera relating to the Measurement of Geodetic Bases by Jaiderin Invar Apparatus. Dehra Dūu, 1912.
8. Fustructions for taking Magnelic Obserrations, By J. Eccles, M. A. Delıra Dūu, 1896. (Out of print).
9. Rectangular Coordinates.-On a Simplification of the Computations relating toBy J. Eccle, M. A. Delura Dūn, 1911. Price Re. 1 or 2 .
10. *For Explorers. - Notes on the use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights. By J. de Graaff Hunter, M. A. Delura Dün, 1911. (Out of print).
11. Amended Instructions for the Survey and Mapping of Town Guide Maps. August 1919.

D-MISCELLANEOUS PAPERS.

(Obtainahle from the Superintendent, Map Publicution, 13, Wood Street, Calculta).

UNCLASSIFIED PAPERS.

Geography.

1. A Slsetch of the Geograpliy and Geology of the Himalaya Mountains and Tibet (in four parts), by Culoncl S. G. Murrard, R. E., F. R.S., Supdt., Irigonometrical Surveys, and H. H. Hayden, R. A., F. G. S., Supdt., Geological Survey of India. Calcutta, 1907-08.

Part I.- The High Peaks of Asia.
" II.-Whe Principal Mountain Ranges of Asia.
" IV.-The Geology of the Himalaya.
2. Report on the Identification and Nomenclature of the Himālnyan Pealsa as aeen from Kātmāndu, Nepāl, by Capt. H. Wood, R. E. Calcutta, 1904.
3. Routes in the Western-Himālaya, Kashmir, etc., by Lieut.Colonel T. G. Montgomerie, R. E., F. R. S., F. R. G. S. Thilld Edition, revised and corrected. Dehrn Dūn, 1909. (Out of print.)
4. Routes in the Western-Himālaya, Kashmir, etc. with which are included Montgomerie's Routes. Volume I. Pūnch, Kashinīr and Ladākh, by Major Mason, M.C., R.E., 1st edition, Dehra Dūu, 1923. Price Rs. 6.

Exploration.

1. *Account of the Survey Operations in connection with the Mission to Yarlsand and Knehgar in 1873-74, by Captain Henry Trotier, R.E. Calcutta, 1875. (Out of print).
2. Report on the 'Irans-Himālayan Explorations during 1869. (Out of print)
3. Report on the Trans-Himālayan Explorations during 1870. Dehra Dūn, 1871. (Out of print).
4. Report on the Traus-Mimālayan Explorations during 1878. Calcutta, 1880. (Out of print).
5. Explorations in the Eastern Kara-koram and Upper Farkand Valley. (Narrative report of the work of the Survey of India Detachment with the De Filippi Scientific Expedition 1914), ly Major H. Wood, R.E. Dehra Dūı, 1922. Price Rs. 3 or 6".

Special Reports.

1. *lleport on the Mussoorie and Landour, Kumaun and Garhwāl, Rānīlshet and Kosi Valley surveys extended to Peshāwar and Käghān Triangulation during 1869-70, by Major T. G. Montgomerie, R.E. (Out of priut).
2. Report on the Receut Determination of the Longitude of Madras, by Capt. S. G. Burvard, R. E. Calcutta, 1897. (Out of print).
3. "Report on the Observations of the Total Solar Eclipse of 6 th April, 1875 at Cnmorta, Nicobar Islands, by Colonel J. Waterhouse. Calcuttn, 1875. (Out of print).
4. "The 'Total Solar Eclipse, January 22, 1898. Dehra Dūn, 1898.
(1) Report on the observations at Dumraon.
(2) lieport on the observations at Pulgaon.
(3) Report on the observations at Sahdol.
5. "Report on Local Attraction in India, 1893.94, by Captain S. G. Burrard, R.ET. Celcuttr, 1895. (Out of print.)
6. Report on the Trigonometrical Results of the Earthquale in Assam, by Captain S. G. Burrard. Calcuttn, 1898. (Out of print.)
7. Notes on the 'Jopographical Survey of the $1 / 50,000$ Sheets of Algeria by the Topographical Section of the "Service Geographique de 1'Armée", by Captain W. M. Coldatream, R.E. Calcutta, 1906.
8. The Simla Estates Boundary Survey on the scale of 50 feet to 1 inch, by Captain E.A. Tandy, R.E. Cnlcuttn, 1906.
9. A note on the stage renched by the Geodetic Operations of the Survey of India in 1020, by Lieut.Col, H. M. Cowie, R.E.; the Magnetic Survey of India, by Major R. H. Thomar, D.S.O., R.E., aud a note on the present Levelling Policy, by Major K. Mason, M.C., R.E. Dehra Dūu, 1922. (Out of Print).

Geodesy.

1. Notes on the Theory of Errors of Olservation, by J. Eceles, MI.A. Dehra Dūn, 1903 Price As. 8 or 1^{s}.
2. Note on a Change of the Axes of the Terrestrinl Spheroid in relation to the Triangulntion of the G.'I'. Survey of Indin, by J. de Grauff Hunter, M.A. Dehra Dün. (Out of print.) Now incorporated in Professional Paper No. 16.
3. Heport on the Trentment and use of Invar in meneuring Geodetic Bases, by Capt. H. H. Turner, R. \boldsymbol{E}. London, 1907. Price As. 8 or 1'.

Projections.

1. On the projection used for the General Maps of India. Debra Dün, 1903. (Out of print).
2. On the deformation resulting from the method of constructing the International Atlas of the World on the scale of one to one million. By Ch. Lallemand. Translated by J. Eccles, M. L., together with tables for the projection of $1 / M$ Maps on the International ssstem. Dehra Dūn, 1912. (Out of print).

Mapping.

1. *A Note on the different methods by which hills can be represented upon maps. By Colonel S.G. Burrard, C.S.I., R.E., F.R.S., Surveyor General of India. simla, 1912.
2. A Note on the representation of hills. By Major C. L. Robertson, C.M.G., R.E. Dehra Dün, 1912.
3. *A Note on the representation of hills on the Maps of India. By Major F.W. Pirrie, I.A. Dehra Dün, 1912.
4. A consideration of the Contour intervals and Colour Scales best suited to Indian 1/M maps. By Cuptain Mr. O'C. Tandy, R.E. Calcutta, 1913. (Out of print).
PROFESSIONAL PAPERS-Price Rupee 1 or 2 'per volume, except where othervise stated.
No. 1-Projection-On the Projection for a Map of India and adjacent Countries on the scale of 1:1,000,000. By Colonel St. G. C. Gore, R.E. Second Edition. Dehra Dūn, 1903.
No. 2 *Base Lines-Method of measuring Geodetic Bases by meane of Metallic Wires. By M. Jüderin. (Transluted from Mëmoires Prèsentēs par. Divers Savments a l'Académie des Sciences de l'Institut de France). Dehra Dūn, 1899. (Out of print.)
No. 3-Base Lines-Method of measuring Geodetic Bases by menns of Colby's Compenanted Bars. Compiled by Lieutenant H. McC. Cowie, R. E. Dehra Dün, 1900. (Out of print.)
No. 4-Spirit-levels-Notes on the Calibration of Levels. By Lieutenant E. A. Tandy, R. E. Delira Dūn, 1900. (Out of print)
No. 5-Geodesy-The Attraction of the Himàlayn Mountains upon the Plumb-Line in India. Considerations of recent data. By Major S. G. Burrard, R. E. Second Editiou, Dehia Dūn, 1901. Price Bs. 2 or $\mathbf{1}^{3}$.
No. 6-Base Lines-Account of a Determination of the Co-efficients of Prpansion of the Wires of the Taderin Base-Line Apparatus. By Captain G. P. LenoxCony"gham, R. E. Delra Dūn, 1902. (Out of print.)
No. 7-•Miscellaneous. Calcutta, 1903.
(1) On the values of Longitude employed in maps of the Survey of Indin.
(2) Levelling across the Ganges at Damuikdia.
(3) Experiment to test the incrense in the length of a Levelling Stnff due to moisture and temperature.
(4) Description of a sun-dial designed for use with tide gauges.
(5) Nickel-steel alloys and their npplication to Geodesy. (Translated from the French).
(6) Theory of electric projectors. (Translated fiom the French).

No. 8-Magnetic-Experiments made to determine the temperature co-eficients of Watson's Magnetographs. By Captain H. A. Denholm Fraser, R.E. Calcutta. 1905.

No. 9-Geodesy-An Account of the Scientific work of the Survey of India and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Cornmittes assembled in 1905. By Lieutenant-Colonel S. G. Burrard, R. E., F.R.S. Calcutta, 1905.
No. 10-Pendulums-The Pendulum Operations in India, 1903-1907. By Major G. P. Lenox-Conyngham, R. E. Dehra Dūn, 1908. Price Rs. 2.8 or 5'.

No. 11-Refraction-Obsersations of Atmospheric Refraction, 1905-00. By H. G. Shaw, Surcey of India. Dehra Dūn, 1911. (Out of print.)
No. 12-Geodesy-On the Origin of the Timanlayn Mountnins. By Colonel S. G. Burrard, C. S. I., R. E., F. R. S. Calcuttn, 1912.
No. 13-Isostasy-Investigntion of the Theory of Isostnay in India. By Major $\boldsymbol{H} . \boldsymbol{L}$. Crosthwait, R.E. Dehra Dūn, 1912. (Out of print.)

PROFESSIONAL PAPERS.-(Continued).

No. 14-Refraction-Formulm for Atmospheric Refraction and their application to Terrestrinl Refraction and Geodesy, by J. de Graaff Hunter, M. A. Dehrs Uūu, 1913. Price Rs, 2 or 4 .
No. 15-Pendulums-The Pendulum Operations in India and Burma, 1908-13, by Caytain H. J. Couchman, R. E. Dehra Dūn, 1915. Price Re. 2.8 or $5^{ }$.
No. 16-Geodesy-'The Earth's Axes and Triangulation, by J. de Graaff Hunter, M.A. Dehra Dūu, 1918. Price Rs. 4 or 8^{s}.
No. 17-Isostasy-Investigations of Isostany in Himālayan and Neighbouring Regions, by Colonel Sir S. G. Burrard, K. C. S. I., R. E., F. R. S. Dehra Dūo, 1918. Price Re. 1 or $2^{\text {s. }}$.
No. 18-Isostasy-A criticism of Mr. R. D. Oldham's memoir "'The structure of the Himālayas and of the Gangetic Plain", by Lisut.-Colonel H. McC. Cowie, R.E. Dehra Dūn, 1921. Price Ra. 1.8 or 3^{3}
No. 19-Aerial Photography-Experiments in Aeroplane lhoto Surveying, by Major C. G. Lewis, R.E., and Captain H.G. Salmond, (Late R.A.F.). Delira 1ūn, 1920. Price $R s .1-8$ or 3 .
DEPARTMENTAL PAPERS SERIES. (For departmental use only.)
No. 1-Type-a consideration of the most suitable forms of type for use on mops, by Captain II. O'C. Tandy, R. E. Dehra Dūn, 1913.
No. 2-Symbols-A review of the Boundary Symbols used on the maps of various countries, by Captain M. O'C. Tandy, R. E. Dehra Dũn, 1013.
No. 3-Maps-Extract from "The New Map of Italy, Scale 1: 100,000.", by Luigi Giannilrapani Translated from the Italian by Major W. MI. Coldstream, R.E. Dehra Dṹn, 1913.
No. 4-Town Surveys-A report on the practice of Town Surveys in the United Kingdom nud its application to Iudia, by Major C. L. Robertson, C.M.G., R.E., Dehra Dūn, 1913.
No. 5-Stereo-plotter-The 'Ihompson Stereo-plotter and its use, with notes on the field work, by Licutenant K. //aṣon, R. E. Dehra Dūn, 1013.
No. G-Levelling-Levelling of High Precision, by Ch. Lallemand. Translated from the French by J. de Graaff Hunter, M.A. Dehra Dūu, 1914.
No. 7-Standard Bars-Bar Comparisons of 1907-08, by Major H. McC. Cowie, R. E. Dehra Dūu, 1915 .

No. 8-Helio-zincography-Report on Rubber Off-set Flat bed Machine Printing, by Captain S. W. Sackuille Hamilton, R.E. Calcutta, 1915.
No. 9-Stereo-Auto-Plotting—A trauslation of Paul Corbin's Freuch Stéréo Autogrammétrie by Lieutenant-Coloncl H. M. Cowie, R.E. Dehra Dūn, 1922. PROFESSIONAL FORMS.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dūn. A list of these can be obtained from the Superintendent of the Trigonometrical Survey, Dehra Dūn, U. P.

EXTRA-DEPARTMENTAL PUBLICATIONS.

1. *Indin's Contribution to Geodesy, by General J. I. Walker, R.E., C.B., F.R.S., LL.D. (Philosophical Transactions, Royal Society Seriee A, Volume 186, 1895).
2. *On the Intensity and Direction of the Force of Gravity in 1ndia, by Lieutenant-Colonel S.G. Burrard, R.E, I.R.S. (Philosophicnl Transactions, Rogal Society Series A, Volume 205, pages 289-318, 1905).
3. On the eflect of the Gnugetic Alluvium on the Plumb.Line in Northern India, by R. D. Oldham, F.R.S. (Proceedings Royal Society, Series A, Yolume 90, pages 32-40, 1914).
4. *On the origin of the Indo-Gangetic trough, commonly called the Himalayan Foredeop, by Colonel Sir S. G. Burrard, B.O.S.I., R.E., F.R.S, (Proceedings, Royal Society Series A, Volume 91 , pages $220-238,1915$).
5. tThree comprehensive articles on "Comparators for the Indian Government" froas a report by Major H. M. Cowie, R. E. (Ingineering, Aug. 20, Aug. 27, Sep. 3, 1915).
6. §Identification of l'eaks in the Himãlaya with notes, by Colonel Sir S. G. Burrard, K.C.S.I., R.E., F.R.S. (Geographical Journal, September, 1918).

* Obtninablo from Messrs. Dulatu \& Co., 37, Soho Squaro, London, W., or Messrs, Harrison \& Sods, St, Martin's Lanc, London, or the Roynl Society nt Burlingion House, London.
+ Obtainable from Charles Lobert Johnaon at the offices of "Engineering", 35 and 36, Bedford Street, Strsad, Loudon W, C.
§ Oblainable from the Royal Geographical Society Kensington Goro London, S.W. 7.

EXTRA-DEPARTMENTAL PUBLICATIONS-(Continued).

7. §(ieolngical interpretations of Geodetic Jesults, by Colonel Sir S. G. Burvard K.C.S.I., R.E., F.R.S. (Gengraphical Journal, October 1918).
8. §War Sureys in Mesopotamia, by Colonel F. W. Pirric, C.MI G., I.A. (Geographical Journal, December 1918).
9. § lir l'hotography in Archaeology, by Lieutenant-Colonel G.A. Beazelcy, D.S.O., R.E., (Gcographical Journal, May 1919).
10. §Mapping from Airphotographs, by Lieutenant-Colonel M.N. Mac Leod, R.E. (Geographical Journal, June 1919).
11. §Reminiscences of the Map of Arabia and Persian Gulf, by Lieutenant-Colonel F. F. Hunter, D.S.O., I.A. (Geogriphical Joumal, December 1919).
12. §Central Kurdistav, ly Major K. Mason, M.C., R.E. (Geographical Jourual December 1910).
13. §Surveys in Mesopotamia during the War, by Lieutenant-Colonel G.A. Beazeley, DS.O., R.E. (Geographical Journal, February 1920).
It. $\quad+\mathrm{A}$ lecture on the Rarth's Axes and ligure, by J. de Graaf Hunter, M.A., (The Observatory, May 1920).
14. §A brief revicw of the evidence upon which the theory of Isostasy has been based, by Colonel Sir S.G. Burrard, K.C.S.I., R.E., F.R.S. (Geographical Journal, July 1920).
15. §A note on the topography of the NunKun Massif in Ladakh, by Major K. Mason, M.C., R.E. (Geographical Journal, August 1920)
16. §Notes on the Canal System and Ancient Sites of Babylonia in the time of Xenophon, by Major K. Mason, M.C., R.E. (Geographical Jourual, December 1920).
17. TTopographical Air Survey (with plates and maps), by Lieutenant-Colonel G. A. Beazeley, D.S.O., R.E. (Roynl Engineers Tournal, l'ebruary 1921).
18. TProjection of Maps.-A review of some Investigations in the theory of Map Projec. tion, by A. If. Young-by Colonel Sir S.G. Burrard, K.C.S.I, R.E., F.R.S. (Hogal Jinginee:'s Journal, March 1921).
19. §The Circulation of the Earth's Crust, by Lieutenant-Colonel E, A. Tandy, R.E. (Gcographical Juurnal, Mny 1921).
20. ||Johuson's Suppressed λ scent on E G1, by Major K. Maron, M.C., R.E. (Alpine Journal, November 1921).
21. §stercographic Surrey. The Autocartorraph, by Lieutcnant-Colonel M.N. MacIed, D.S.O., RES (Gecgraphical Journal, April 1922).
22. "The "Canadian" phototopographical method of Survey, by Captain and Bt. Major E. O. Wheeler, M.C., R.E. (R'yal Engineers Journal, A pril 1922).
23. \|The Survey of Mr. W.H. Johnson in the K'un Lun in 1965, by Mojor K. Mason, M.C., R.E. (Al_{p} ine Journal, November 1922).
24. $\mathrm{F}_{\mathrm{G}} \mathrm{Gravity}$ Surver, ly J. de Greaff Hunter, M.A, Sc.D., F. Inst. P. (A Dictionary of Applied Plysics, Yol. I1J).
25. WTrigonometrical Heights and Atmospheric Jefraction, by J. de Gractf Hun/er, M.A., Sc D., F. Inst. P. (A Dictionary of Applied Physies, Vol. III).
26. Gendesy, by Colonel Sir G.P. Lenox-Comynghan, Kt., R.E., F.R.S. and J. de. Graaff Hunter. M.A. Sc.D., F. Inst. P. (Enc. Brit. 12th Edition, Vol. XXXI, 1922).
27. §The proposed letermination of Primary Longitudes by International Cooperation, ly Colonel Sir G.P. Lenor-Conyngham, K'., R.E., F.R.S. (Geographical Journal, Feb. 1923).
28. §liecent Developments of Air photorraphy.-(1) 'I he adjustment of Air photographs to Survey points. by Licutenont-Colonel M.N. MacLeod, D.S.O., R.E. (Geographical Journal, June 1923)
29. §たishen Ningh and the Indian Explorers, by Major K. Mason, M.C., R.E. (Gcographical Journal, December 1923).
30. *Flectrical Registration of Height of water at any time in Tidal Prediction, $b_{y} J$. de Graaff Huntur M.A.. SC.D., F. Inst. P. (Jomrmal of Scientific lnstrumente, Vol. 1, No. S, May 1921).

[^7]

呂			
苟	者景		
\％			
包－			
\％			
亏			
8			
88			
合			
局			
			圂
$\square 1$			
8			
8			
－			の日
Oix ene			
0			
$\stackrel{\square}{6}$			
8			
ㅇ：＊		＊＊	－
に	－\％	－管－블	
\％			
12			
弌			
N．			

AGENTS FOR THE SALE OF INDIAN OFFICIAL PUBLICATIONS.

$1, O N D O N$.
A. Constaule \& Co., 10, Orange Street, Leicester Square, W.C.
P. S. King \& Son, 2 and 4, Great Smith Street, Westminster, S. W.
Keasn Paul, Tinexcit, Tiudner \& Co., 68, Carter Lame, E.C.
B. Quamitcr, 11, Grafton Street, New Bond Street, W.
Hentry S. Lina \& Co., 65, Coruhill, E.C.
Gmindesy \& Co., 54, Purliament Street, S.W.
I' Fishen Unwis, Ifd., 1, Adelphi Terrace, W.C.
W. Tusceer \& Co., 2, Crced Laue, Ludigate Hill, L.C.
Luzac \& Co., 4G, Great Russell Street, W.C.

EDINBURGII.

Oliveu and Boyd, 'T'weeddale Court.

UUBLIN
E. Ponsonuy, Lite, 116, Graltull street.

OXPORD.

B. H. Blackyell, 50 and 51, Broad Street.

CAMBRIDGE.
veighton, Bell \& Co., Ltd, Trimity Street.

ON TIIE CONTINENT.
Leneat lefocix, Ruc Bonaparte,
Paris - lirance.

Maminus Nivitoff, The IIague - Lullamel.
Orro ILamassowity, Lefpais $\}$ Gomany

FJR MAPS ONLY.

LONDON.
Edward Stanfond, Ltd, 12-14, Long dero, W.C.

INDJA.
Tuacisel, Splink \& Co., No. 3, Esplanade, East, Calculta.
Nemman \& Co., No. 3, Old Court House Street, Calcutta.

The Punjab Religious Book Society, Inhore.
Burman \& Co., Muzaffarpur.
Thacken \& Co., Ltd., Bombny.
D. B. I'amaponeyala Sons \& Co., Bombay

MigainbotLam, Ltd., Madras.
The Cumatolt, Government Boor Depót Burnm, Rangoon.
'lhackelt, sipink \& Co., Simin.
Cockuule Auency, Srinagar, Kashmír.

SURVEY \& PUBLICATION

PUBLICATION OF THE ONE-INCH SERIES
$3{ }^{36^{6+4}}$

(36)

4
\sim

$\frac{1}{-(55)}$

$$
\begin{aligned}
& \text { note }
\end{aligned}
$$

INDEX TO THE SHEETS OF THE
CARTE INTERNATIONALE DU MONDE

EXPLANATION.
FEFERBNCE
The thick lines show the markins of the sheets of the International Map of the World, Scale 1:1,000,000. Each sheet is designated by the letter N (Northern hemisphere), followed by the marginal letter and number correxponding to its position, e.g., the sheet which includes Bombay is N. $\boldsymbol{E}-13$

The figures in circles are the numbers of the sheets of the India and

Sheels published
under publication
in hand
To illustrate the Report for the yenr 1921.22

[^0]: - The arean shown here an anreered by each camp include 45 sqnare miles of sea areas which bave been excladed from the out-turn of the party in trable III.

[^1]: (a) Additional points, previously tixed, will also be nsed in this area.

[^2]: (a) Additional points, previonsly tixed, will also be used in this area.

[^3]: - Reccives new height

[^4]: - Theac raluea are prorisional as the linea have only bean levelled in ono direction.

[^5]: Notz．－When the sign is＋the magnet points to the east，and when－to the west of the mean porition．

[^6]: - Tibetan Commander-in-Chief.

[^7]: S Obiainal, from the Royal Geographical Society Kenainglon Gore London, S.W. 7
 I Ohtainable from Mesars Jaylor \& Froncis. Red Lion Court, Ileet Street, Iondon, W.C.
 of Ohtainalole from The Institution of Moyal lingincers, Chatham.
 $\|$ Ob amalde from Alpine Clab, 23 Savile Low, London, W. 1.
 Calcutfa, Madrns, Melbontre.
 **Obtainalite from the Institule of pbysica, 90 Great Ragaz Street, London, W.C. I.

